
Available online at www.sciencedirect.com

Manufacturing Letters

Manufacturing Letters 35 (2023) 1203–1213
51st SME North American Manufacturing Research Conference (NAMRC 51, 2023)

Deep reinforcement learning for stacking sequence optimization of
composite laminates

Sara Shonkwilera, Xiang Lia, Richard Fenrichb, Sara McMainsa,∗

aUniversity of California, Berkeley, United States
bArevo Inc., Milpitas, United States

Abstract

Fiber reinforced polymer (FRP) composite laminates are increasingly used in a wide range of safety-critical products due to their excellent material
properties. The stacking sequence of FRP composite laminates plays a critical role in the resulting part’s mechanical properties. Despite this,
composite engineers still commonly fabricate parts with “classic” ply layups (e.g. four ply laminate with fiber orientation angles: [-45/0/45/90◦]),
which may have sub-optimal mechanical performance in the expected loading/use cases. Finding the composite stacking sequence that achieves
the best material and mechanical properties possible is a challenging optimization problem characterized by the large domain space involved
in solving an inverse design problem. This paper introduces a novel approach to optimizing stacking sequence for composite plate stiffness
by applying off-policy deep reinforcement learning (DRL). We formulate the problem as a sequential decision making process. The state of
the system is based on the stiffness of the composite for the currently selected stacking sequence and the action is to select a new stacking
sequence using our reward function, formulated as the offset, normalized stiffness modulus. We compare our DRL model to two classical stacking
sequences, a randomized baseline model, and a competitive genetic algorithm (NSGA-II). For maximizing longitudinal composite plate stiffness,
the DRL model finds the optimum solution for all ply thicknesses and the genetic algorithm comes within 0.5% of the optimum. The DRL model
determines the optimum stacking sequence significantly faster and is less sensitive to parameter tuning. The DRL model and the genetic algorithm
both outperform the random baseline algorithm by over 5.7 standard deviations in the most conservative case. This research demonstrates the
ability of DRL to effectively and efficiently optimize composite laminate stacking sequence.

c© 2023 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME.

Keywords: Fiber-reinforced polymer composite; Composite stacking sequence; Deep reinforcement learning

1. Introduction

Fiber reinforced polymer (FRP) composites are increasingly
used, especially in high performance manufacturing applica-
tions (e.g. aerospace, automotive, sports equipment), due to
their high strength-to-weight ratio, corrosion resistance, and
other favorable material properties [45, 36].

Fiber Reinforced Polymer (FRP) composites consist of (1)
fiber reinforcements and (2) polymer resin matrix. The fibers,
commonly made of carbon or glass, support the majority of the

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: mcmains@berkeley.edu (Sara McMains).

loads applied to FRP parts. The resin matrix connects the fibers
and transfers the stress among the fibers. Composite laminates
are made by stacking a series of single orientation fiber layers
or lamina. Composite laminates generally have orthotropic me-
chanical properties that can be altered or tuned. Lamina stack-
ing sequence is vital to determining FRP composite mechanical
properties [22].

The choice of lamina fiber orientations, called the compos-
ite stacking sequence, impacts the mechanical properties of the
resulting composite part [31, 11, 34]. As manufacturing pro-
cesses for FRP composites improve, there is increasing control
over stacking sequence. Increased control opens an opportunity
to efficiently optimize stacking sequence to optimize mechani-
cal properties for anticipated loading conditions. Currently, en-
gineers in industry often treat FRP composites as “black alu-

2213-8463 c© 2023 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME.

http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0


S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1204

minum,” using default stacking sequences (e.g. [0,45,-45,90◦])
with “fixed” mechanical properties. Not utilizing the ability to
fully tune composite properties is a loss of potential weight
and cost savings. FRP composites’ widespread use, especially
in safety and weight critical applications, coupled with few
industry-ready tools to optimize FRP composite stacking se-
quence, makes it an important material to optimize or tune in-
dividual mechanical properties for specific use case needs. For
the purpose of this paper, we will focus on maximizing com-
posite plate stiffness (Ex, Ey) as two examples of mechanical
properties that can be optimized.

A plethora of optimization algorithms have been imple-
mented to try to optimize composite stacking sequence for
given use cases and desired properties; however, according to
recent reviews and analysis [44, 41, 4], these algorithms have
significant limitations, such as only guaranteeing local optimal
results or using outdated evolutionary optimization algorithms.

In this research, a Deep Reinforcement Learning (DRL)
framework is developed to design mechanically stiff FRP com-
posites by optimizing over the stacking sequence. Our main
contributions include:

• A novel approach to composite stacking sequence opti-
mization using deep reinforcement learning.

– Performs well: Optimizes Ex with results 5.7, 6.5,
10.7, and 15.5 standard deviations above the mean
results for random stacking sequences for 3, 9, 32,
and 70 ply respectively.

– Fast: For continuous stacking sequence [0,180◦) 3,
9, 32, and 70 ply laminates, calculates Ex in ∼1, 3,
6, 11 seconds respectively.

• A comparative analysis of deep reinforcement learning to
a genetic algorithm and two baseline algorithms.
• Discussion of design choices, parameter tuning details,

and sensitivity analysis that other researchers can build
upon.

2. Background

FRP composite mechanical properties depend on their mi-
crostructure, such as the spatial arrangement of the fibers. For
composite laminates the most easily changed microstructure
property is the orientation or stacking sequence of fibers in
the matrix [5]. As early as 2010, Bloomfield [4] pointed out
some limitations of existing composite stacking sequence op-
timization methods (primarily lamination parameters and ge-
netic algorithms), yet as of 2020, Wang and Sobey [44] state
that published work still uses older evolutionary optimization
algorithms that only guarantee locally optimal results. Addi-
tionally, in industry, engineers rarely use existing optimization
techniques, often due to time constraints.

One method to optimize composite laminate stacking se-
quence is using gradient based approaches [38, 24, 30, 12].
These methods require being able to calculate the gradient, can
only guarantee that solutions are a local optima for the stack-
ing sequence, and are unable to handle large numbers of design
variables (which many modern problems have) [4].

The use of lamination parameters as an intermediate design
variable is another approach to composite stacking sequence
optimization [43, 29, 10, 14, 15, 32, 8, 18, 23, 40]. As stated
in Tsai & Hahn [43], researchers use material invariants and
twelve lamination parameters to define stiffness properties of
composite laminates. Miki [29] uses lamination parameters to
maximize buckling load by selecting the optimal stacking se-
quence. Fukunaga & Vanderplaats [10] use lamination parame-
ters and mathematical programming techniques to optimize the
stiffness of orthotropic laminates. Haftka & Walsh [15] and Na-
gendra et al. [32] use lamination parameters and integer pro-
gramming techniques to optimize stacking sequence subject to
buckling constraints (and strength constraints in the case of Na-
gendra et al.). Unfortunately, integer programming techniques
are computationally expensive. Diaconu & Sekine use lamina-
tion parameters to maximize the buckling load of laminated
composite shells [8]. Grenestedt & Gudmundson [14] derives
the possible region of lamination parameters for symmetric or-
thotropic laminates. One of the main limitations of lamination
parameters is the full feasible region of lamination parameters
is unknown [4].

Another stacking sequence optimization approach is using
simulated annealing as in Erdal & Sonmez [9]. These ap-
proaches have several downsides such as points may converge
to a non-optimal solution and they are not good at optimizing
for specific use cases (they are better for general stacking se-
quence optimization) [13].

Genetic algorithms are the most popular type of algorithm
used to optimize composite stacking sequence [28, 16, 39, 6, 1,
27, 35, 42]; however, genetic algorithms may only yield local
optimums [41] and as described in Wang & Sobey [44], many of
the genetic algorithms used in composite stacking sequence op-
timization research are lacking in documentation of parameter
choices. The genetic algorithm used as a comparison in this re-
search is described in detail in subsection 3.4. Researchers have
also investigated using other optimization algorithms, such as
multi-objective evolutionary algorithms [4, 2, 21, 20, 19] for
composite stacking sequence optimization.

Reinforcement learning (RL) is the branch of machine learn-
ing (ML) where an agent takes a series of actions based on
interactions with an environment attempting to maximize ex-
pected rewards, r(s, a). The strategy the algorithm uses to pick
successive actions is called the policy. Unlike traditional ML
or deep learning (DL) models, RL models do not generally use
pre-existing data to learn a model, but rather RL models gener-
ate data as they learn which is a key advantage to RL. Further,
RL does not require “successful” data in order to learn. Rein-
forcement learning occurs in a simulated world with policies,
states and/or observations, actions, buffers, and rewards. The
goal of a RL algorithm is to learn a policy, πθ, that maps the
current state, st, to an action, at. In the case of Deep Reinforce-
ment Learning (DRL), the policy is generally a neural network
and θ represents the parameters (weights, biases) of that deep
neural network. Thus for DRL, the goal is to find parameters, θ,
that define the policy so as to maximize the expected value of
the sum of the rewards over the trajectory (τ):



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1205

θ∗ = arg max
θ

Eτ∼πθ(τ)[
∑

t

r(st, at)] (1)

Deep reinforcement learning has been used in other mate-
rial design and manufacturing applications [25]. For example,
RL is used in Zheng et al. [46] to optimize the distribution of
functional groups in graphene oxide. Sui et al. designed a DRL
framework and used a collaborative deep Q network (DQN) ar-
chitecture to optimize average tensile strength along the pri-
mary axes for small 2D grids representing composite parts. This
research toggles which areas of a 2D composite part are the soft
versus stiff material to find the optimal location of soft and stiff
materials [41]. This research is limited to small, not necessarily
continuous fiber, 2D square cross sections. To the best of our
knowledge, reinforcement learning has never been used to opti-
mize composite stacking sequence. In the following section, we
detail our approach to creating a DRL model targeted at opti-
mizing composite stacking sequence, as well as the underlying
composite plate model, and two baseline models, and a genetic
algorithm for comparison.

3. Methods

3.1. Overview of optimization models

This paper compares the performance of four models — our
DRL model, an NSGA-II genetic algorithm, and two baseline
models — at optimizing composite stacking sequence for stiff-
ness. The models are summarized in Table 1 below. Detailed
descriptions of each algorithm and the motivation behind using
them can be found in the following subsections.

Table 1: Models

Model Type Model Description

Baseline Model 1 Randomized model (1000 runs)
Baseline Model 2 Classic stacking sequences (e.g. [0/45/90◦]3)
Genetic Algorithm NSGA-II
DRL Algorithm Deep deterministic policy gradient model

3.2. Composite plate stiffness model

We calculate composite plate stiffness using standard plate
homogenization from basic composite laminate theory based
on [33]. The material used throughout this paper is based on a
composite laminate made by the company Arevo Inc. with the
following properties:

• Volume f raction, v f = 0.50
• E1 = 115GPa
• E2 = 7.1GPa

based on the material used for testing in [37]. The model input is
the stacking sequence, expressed as a 1D array, nx1 (where n is
number of plies), to represent a single laminate plate. The sim-
ulation calculates resulting composite mechanical properties
including longitudinal and transverse Young’s Modulus (Ex,
Ey). For this research, four different model/example composites
were optimized: 3, 9, 32, and 70 ply composite plates. Realistic
use cases for each composite model level are described in Table
2.

Table 2: Composite Laminate Model Parts

Number of plies Use Case

3 Simple test case of laminate over core material,
allows 3D design space display

9 Thin solid laminate
32 Medium solid laminate, similar to [19]
70 Thick solid laminate, reasonable upper bound due to

manufacturing process and time constraints

3.3. Deep reinforcement learning model

In DRL models, the state st of the system is an input to the
policy and represents where the model is at a given point in
time, t. The action, at, represents the output of the policy or
the way the model changes states. The reward function, r(s, a),
encourages actions that lead to desirable states and discourages
actions that lead to undesirable states.

In our DRL model, each state is a representation of the
stiffness of the composite for a given stacking sequence (st =

normalize f actor∗Ex/y). Each action is a one dimensional array
of length n (the number of plies) of numbers between [0, 180),
where we define zero degrees to be the direction of longitudinal
pull. The n-dimensional action array represents the angles, in
degrees, of the fibers in each layer (i.e. the stacking sequence).
Since our model picks as each action an entirely new stacking
sequence, it is able to update/change quickly and potentially
find the optimum in a short amount of time. The reward func-
tion is determined from the longitudinal or transverse Young’s
Modulus (Ex or Ey), the stiffness of the laminate in the longi-
tudinal or transverse direction. Normalizing rewards to [−1, 1]
roughly balances half the rewards as “good” (positive rewards)
and half the rewards as “bad” (negative rewards). Normalizing
rewards can also be thought of as controlling the variance of the
policy gradient estimator (i.e. avoiding extreme values in the
neural network weights). Practically this often results in faster
learning than the same model and parameters without normal-
ization. Thus, to achieve normalized rewards, we offset the cur-
rent stiffness (Ex(st) or Ey(st)) by the mean stiffness for that
direction (µEx or µEy ) so that the reward has zero mean. Then
we divide by six times the standard deviation (σEx or σEy ) to
cap the bounds to approximately [−1, 1]. Our reward function
is defined as follows:

r(st) =
Ex/y(st) − µEx/y

6σEx/y

(2)



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1206

where Ex/y(st) is the longitudinal/transverse composite plate
stiffness at the current state, µEx/y is the mean composite plate
stiffness in that direction, and σEx/y is the standard deviation
of composite plate stiffness in that direction. Our DRL model
variables are summarized in Table 3, along with an example.
An overview of our DRL model is shown in Figure 1.

Table 3: DRL Model Variables

Variable Description Example

State (st) Normalized stiffness st = 2.23
modulus

Action (at) Selecting a new at = [23.34, 4.53, ..., 130.49]
stacking sequence

Reward (rt) Normalized, offset rt = −0.25
stiffness modulus

The goal of the reinforcement learning algorithm is to learn
the policy, πθ, that maps the current state to an action. Simi-
lar to Sui et al. [41], we use a fully connected neural network
to approximate the policy. After conducting experiments to test
different numbers of neural network layers and nodes, we de-
termined that a two layer, 64 node network is sufficient for this
optimization problem (more layers or nodes only increased the
run times). Thus we use a two layer, 64 node multi-layer per-
ceptron (MLP) neural network to model the Q-function and pol-
icy at each time step. (Note that a deeper neural network might
be called for to make more complicated optimization problems
feasible.)

There are numerous RL algorithms that generally fall into
three categories: on-policy RL, off-policy RL, and offline RL.
On-policy RL updates the policy with data collected by the cur-
rent policy. Off-policy RL updates the policy with data from
all policies the RL algorithm has generated, sampled from a
buffer. Offline RL uses data collected prior to running the algo-
rithm with no online data collection. We chose an off-policy ap-
proach to take advantage of reusing already collected data from
previous policies. This saves time because accurately modeling
many composite stacking sequences takes a non-trivial amount
of time. Off-policy RL stores data from previous policies in a
buffer and samples from this buffer to update the policy. This
is advantageous because it means the model learns from a wide
range of previous experiences. It is also advantageous to be able
to reuse previously collected data instead of having to collect
new data at every time step. The advantage of off-policy would
be even higher for more computationally expensive modeling,
such as FEM.

We implemented the deep deterministic policy gradient
(DDPG) algorithm. DDPG is an actor-critic, off-policy, model-
free algorithm that extends deep Q-learning to the continuous
action space. Q-learning uses a Q-table to map state, action
pairs to expected future rewards. The Q-value is the maximum
expected reward an agent can get if it takes a particular action
from state st. Deep Q-learning uses a neural network to approx-
imate the relationship between states, actions, and expected fu-
ture rewards.

Using DDPG, the model can predict any ply orientation in-
stead of only fixed orientations. This makes DDPG ideal for
high precision stacking sequence tuning. Additionally, it avoids
unnecessary action space discretization that reduces the algo-
rithm’s ability to learn relationships between nearby actions.

DDPG uses off-policy data and the mean squared Bellman
error to learn the Q-function. In turn, the Q-function learns the
updated policy, πθ.

The Bellman equation is the optimal action-value function:

Qπ(st, at) = Ert ,st+1∼E

[
r(st, at) + γEat+1∼π[Q

π(st+1, at+1)]
]

(3)

where r(st, at) is the reward, γ is the discount factor (how
much to prioritize near term versus long term rewards), and
Qπ(st+1, at+1) is the ideal Q-value for the following state, action
pair.

To learn the Q-function, DDPG minimizes the mean squared
Bellman error:

L(φ,D) = Est ,at ,rt ,st+1∼D

[(
Qφ(st, at) −

(
r(st, at)+

γQφtarg (st+1, πθtarg (st+1))
))

2
] (4)

which represents how close our approximator, Qφ(s, a), is to
Qπ(s, a). The DDPG algorithm approximates Qπ(s, a) using a
neural network, Qφ(s, a), in our case the two layer MLP neural
network.

Choosing an appropriate ML architecture based on process-
related knowledge is an important factor for RL optimization.
In the case of this optimization, our model is the first RL model
to optimize composite stacking sequence; accordingly, we se-
lected a relatively straightforward optimization task (i.e. stiff-
ness). Since the optimization task is straightforward, a “tradi-
tional” two-layer MLP architecture is sufficient. We anticipate
that the ML model for more complicated optimization cases
will need to be carefully fine-tuned based on process related
knowledge.

To learn the actor policy, πθ, from the Q-function, we take
the gradient ascent of the Q-function with respect to the policy
parameters.

DDPG creates target networks, θtarg and φtarg, for the pol-
icy network and Q-function network respectively, which are the
same neural networks, but the weights and biases lag the origi-
nal neural networks because the target networks depends on the
same parameters we are trying to learn; without this difference
learning would be unstable. The target networks are periodi-
cally updated.

The DDPG algorithm performs the following operations for
each step while learning: (1) select an action using the current
policy and state st, (2) use that action to calculate reward rt



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1207

Fig. 1: DRL state transition and model for composite plate stiffness maximization. (a) Our off-policy DRL model. The buffer stores data (transitions) from previous
policies. The neural network policy is updated periodically. (b) (upper right) The portion of our off-policy DRL model that shows one state transition. Our neural
network models the DRL policy, πk , and maps states and rewards to actions. After an action is taken, the state and the reward are updated.

and update state st+1, (3) store transition st, at, rt, st+1 in buffer,
(4) randomly sample transitions from buffer (mini-batch), (5)
update critic network/Q-function, Qφ(s, a), to minimize mean
squared Bellman error using stochastic gradient descent, using
target networks (6) update actor policy network, πθ, using the
sampled policy gradient ascent, and (7) update target networks,
θtarg and φtarg. At the end of each step, the algorithm returns to
operation (1) and repeats. At the end of each episode, the state
is reset before returning to operation (1) [26].

Deep reinforcement learning models, and ML models in
general, involve multiple user-defined parameters that generally
need to be tuned or varied for optimal results. We tune the fol-
lowing DRL parameters:

• Learning rate (α): value between 0 and 1 that determines
how quickly the parameters, θ, in the policy are updated
(tuned over [0.0005, 0.001, 0.003, 0.005, 0.01, 0.05, 0.1])
• Learning starts: time step at which learning process be-

gins (tuned over 0–400)
• Time steps: number of discrete time steps the DRL al-

gorithm executes. An example time step can be seen in
Figure 1b (tuned over 20–1000)
• Episode length: number of time steps before the DRL en-

vironment resets to the initial state and reward is reset to
zero (tuned over 1–10)

3.4. Genetic algorithm (NSGA-II) model

The genetic algorithm implemented in this paper is the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [7], which
is the most frequently used in composite stacking sequence op-
timization research [44]. The algorithm is implemented with an
open-source optimization framework, Pymoo [3].

Genetic algorithms, a subclass of evolutionary algorithms,
are a type of search heuristic based loosely on the process of
natural selection. In general, genetic algorithms consist of the
following phases: (1) initial population generation, (2) fitness
function calculation, (3) selection of fittest individuals (par-
ents), and (4) crossover and mutation operations. The crossover
operation is the exchanging of parent genes to create entirely
new individuals (offspring). The mutation operation is a type
of noise created by inserting of random genes in the offspring
to promote diversity and reduce the odds of premature conver-
gence.

NSGA-II is a non-dominated sorting genetic algorithm,
which means each solution in the solution set is only better than
every other solution in the solution set in one or more objectives
if it is worse at other objectives. The non-dominated set of solu-
tions represents the Pareto optimal set. The NSGA-II algorithm
(1) creates an initial population; (2) executes non-dominated
sorting and classifies non-dominating fronts; (3) uses crowd-
ing distance to further sort the population, if necessary; (4) se-
lects fittest individuals using tournament selection; (5) performs



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1208

crossover and mutation operations; and (6) combines offspring
with previous generation; and (7) repeats (2)-(6) until termina-
tion.

In this paper, the initial population is a random set of ply ori-
entations (a random stacking sequence). Non-dominated sort-
ing and front classification is determined by running the com-
posite plate stiffness model to calculate Ex and/or Ey (Ex or Ey

for single-objective optimization, Ex and Ey for multi-objective
optimization).

The size of the population and termination condition used
in genetic algorithms are user-determined parameters. We tune
population size over [10, 20, 50, 75, 100, 200]. Three termina-
tion conditions were tested: (1) a tolerance of one degree
change in orientation on average over the stacking sequence for
a period of 20, (2) a tolerance of 100 Pa change in stiffness
for a period of 20, and (3) a timed termination to match the
DRL model for comparison. The period represents the number
of generations over which the termination condition is checked.

3.5. Baseline models

The first baseline model for comparison calculates compos-
ite plate stiffness for several “classic” stacking sequences (e.g.
[0/45/90◦], [-45/0/45/90/-45/0/45/90/0◦]). These are the types
of stacking sequences commonly used by engineers in indus-
try instead of tuning for the optimal stacking sequence [33, 17].
As such, comparing to these stacking sequences gives a reason-
able comparison of how much better our algorithm is compared
to what many engineers in industry are using. Including this
comparison demonstrates the potential for sub-par mechanical
properties when using “classic” stacking sequences.

The second baseline model is a randomized stacking se-
quence. We create 1,000 nx1 dimensional arrays for each ply
thickness where n represents the number of plies in the lam-
inate. Each array element is a random number [0, 180). From
this data set, mean, standard deviation, and maximum compos-
ite plate stiffness are calculated. These are the types of stack-
ing sequences that a computer would generate without human
knowledge of composite behavior. The best random stacking
sequence outperforms the industry standard “classic” stacking
sequences as can be seen in Figure 2. Including this second
baseline emphasizes how much room there is for improvement
over using “classic” stacking sequences — even our random
baseline model will improve performance.

4. Results and Discussion

4.1. Longitudinal composite plate stiffness maximization

We use our DRL model to maximize longitudinal or ten-
sile composite plate stiffness (which we define as Ex). We com-
pare the DRL results to the results from the genetic algorithm
(NSGA-II), as well as the two baseline algorithms (“classical”
and 1,000 random orientation layups). Composite plate stiffness
is maximized in this paper, but this is just one example of a me-
chanical property that can be optimized using DRL. Engineers,

designers, and researchers can customize DRL to optimize for
different mechanical properties.

Our DRL model successfully finds the maximum possible
longitudinal stiffness , 115GPa, for all composites tested (3, 9,
32, and 70 ply composites). The genetic algorithm (NSGA-II),
using termination conditions (1) and (2), comes within ∼0.5%
of the maximum possible longitudinal stiffness.These results
are displayed in Figure 2.

The DRL model executes significantly faster than the genetic
algorithm with termination conditions (1) and (2). The time dif-
ferential increases to the second power with number of plies, as
shown in Figure 3.

NSGA-II termination condition (3) is set to take roughly the
same amount of time as the DRL model for direct performance
comparison. NSGA-II termination condition (3) and the 1,000
random runs maximum perform decently at optimizing stiff-
ness for 3 plies, but their performance drops off significantly
for parts with more plies. Additionally, 1,000 random runs takes
longer than the DRL model, once again with the time differen-
tial increasing with number of plies (Figure 3).

The baseline models (with the exception of 1,000 random
runs maximum) perform poorly at maximizing stiffness. The
single run random baseline, which represents selecting a ran-
dom stacking sequence, performs poorly and has considerable
variation in performance. The gap in performance between the
DRL model, genetic algorithm, and baseline models grows as
the number of plies increases, which highlights the importance
of using an appropriate model rather than simply using trial and
error.

DRL algorithms learn by maximizing expected return or the
expected cumulative reward. Plots of our DRL model rewards
over the different ply experiments are shown below in Figure
4. Our DRL model hits the reward upper bound efficiently. The
model quickly learns that taking actions moving towards the
action space bounds (0 or 180) improves model performance,
measured by the reward function. The model updates the en-
tire stacking sequence at each time step. This means the model
is nimble and can change very quickly — allowing it to opti-
mize straightforward objectives, such as Ex, relatively quickly.
Additionally, the model cannot overshoot the optimum stack-
ing sequence, which simplifies the optimization problem (for
both the genetic algorithm and our DRL model), which further
improves the model efficiency.

4.2. Transverse composite plate stiffness maximization

The focus of this paper is on optimizing longitudinal or ten-
sile composite plate stiffness, but to demonstrate that this model
can be adapted for other mechanical properties we highlight op-
timizing transverse composite plate stiffness. Maximizing lon-
gitudinal composite plate stiffness is relatively straightforward
(for both the genetic algorithm and DRL model) because the
solution set ([0, 0, ..., 0], [180, 180, ...180] and combinations of
angle 0 and 180) lie on the bounds of the action space. The
models cannot overshoot the optimal action and can therefore
converge much faster. We could easily optimize transverse or
transverse tensile composite plate stiffness by making the ac-



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1209

tion space bounds [-90, 90) so that the “best” stacking sequence
would once again lie on the bounds of the action space. Instead,
we keep the action space as [0, 180) and use Ey as a proxy
variable to demonstrate that both our DRL model and the ge-
netic algorithm can optimize for arbitrary mechanical proper-
ties where the solution set does not lie on the bounds of the
action space. Maximizing transverse composite plate stiffness,
Ey, is more challenging (both for our DRL model and the ge-
netic algorithm) than maximizing longitudinal composite plate
stiffness. The DRL model and genetic algorithm successfully
learn to move to ∼90 degrees in each layer, which is not on the
bounds of the action space. Since the optimal stacking sequence
the RL model learns is not on the bound of the action space, it

takes longer to optimize rewards and learn the best stacking se-
quence (as can be seen in Figures 5 and 6).

Figures 5 and 6 show the reward graphs for 3 and 9 ply Ey

maximization; the longitudinal stiffness (in red) optimizes al-
most immediately, well under 100 steps, while the transverse
stiffness (in blue) optimizes within ∼300 steps, including 200
steps in which it does not learn but just explores the action
space. Our DRL model and the genetic algorithm (NSGA-II)
termination condition (3), with the time set to match the DRL
model time, both optimize Ey with performance comparisons
shown in Table 4. The DRL model is still the better model, but
the gap in performance is appreciably reduced.

To compare the DRL and NSGA-II results for Ey, we run
both models for 7 seconds for the 3 ply laminate case and 16

Fig. 2: Left: Graph of longitudinal stiffness of the DRL model, genetic algorithm (NSGA-II) and baseline models. Our DRL model has the best performance,
with NSGA-II termination condition 2 (stiffness-based termination condition) and NSGA-II termination condition 1 (orientation angle-based termination condition)
having the next best performances. The best stacking sequence of 1,000 random runs and NSGA-II termination condition 3 (timed termination set to match how
long the deep reinforcement learning model takes) perform in the middle. The “classic” stacking sequences, average random stacking sequence, and single random
run perform poorly. Right: Zoomed-in portion of graph showing performance comparison between the best models: our DRL model and NSGA-II termination
conditions (1) and (2).

Fig. 3: Left: Time comparison of the DRL model, genetic algorithm (NSGA-II) and baseline models. Our DRL model runs significantly faster than the genetic
algorithms with performance-based termination conditions (NSGA-II orientation angle-based termination & NSGA-II stiffness-based termination), as well as 1000
random runs. Right: Zoomed-in portion of graph showing time comparison between 1,000 random runs, DRL model, single random run, and “classic” stacking
sequences on right. The termination condition for NSGA-II Term. 3 is the amount of time it takes our DRL model to run in order to provide the best possible direct
comparison. The “classic” stacking sequences and single random run are the only models that take less time than our DRL model and NSGA-II Term. 3.



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1210

Fig. 4: DRL Model reward curve with all learning starting at time step zero. Curves converge to maximum possible reward ∼0.96, which corresponds to Ex =

115GPa. Error bounds calculated from running each model five times and plotting one standard deviation around mean.

Fig. 5: Comparison of Ex (longitudinal) reward curve to Ey (transverse) reward
curve on the 3 ply case showing that while optimizing Ey takes longer because
the optimum is not on the bound of the action space it can achieve similar results
to Ex. Black vertical line denotes where Ey starts learning.

Fig. 6: Comparison of Ex (longitudinal) reward curve to Ey (transverse) reward
curve on the 9 ply case. Black vertical line denotes where Ey starts learning.

seconds for the 9 ply laminate case. We determine these run
times by the time it takes the DRL model to learn a significant
amount, measured by the reward leveling off after its initial in-
crease. We report these results in Table 4. The DRL model still
performs better than the NSGA-II model.

Table 4: Transverse Stiffness Results Comparison with fixed runtime

Number of Plies (n) 3 3 9 9

Variable NSGA-II DRL NSGA-II DRL

Transverse 112.90 114.31 103.32 108.80
stiffness (Ey(GPa))

4.3. Model parameter tuning

Model parameter tuning is an important aspect of DRL and
genetic algorithm performance — without proper tuning model
performance may be much lower and/or run time may be much
higher than under ideal parameters. Without proper tuning it is
impossible to accurately compare models. For models where
performance and/or time is sensitive to model parameters, tun-
ing for the best parameters can be time consuming. This is a
deterrent for engineers hoping to use optimization tools. We
tune our DRL model and the genetic algorithm both to opti-
mize model performance and also to determine model sensitiv-
ity to tuning parameters. We tune the NSGA-II genetic algo-
rithm over population size, as shown in Figure 7. As expected,
performance increases with increasing population size, but so
does run time. All plots and discussion of NSGA-II results use
the ∼optimum population size, which we determine from tuning
the parameters (e.g. for NSGA-II Term. 1: 3 plies = population
size of 10, 9 plies = population size of 20, 32 & 70 plies = pop-
ulation size of 100, see Figure 7) to ensure a fair comparison
between algorithms.

Although DRL models can be tuned for total time steps,
learning start time, learning rate, and episode length, among
other parameters, for longitudinal stiffness the results do not
change significantly with tuning parameters. This means that
engineers do not need to waste a significant amount of time tun-
ing the DRL model for Ex. The number of time steps needs to be
large enough for the model to converge. For Ex with most learn-
ing rates, 50 time steps is enough for the model to converge, as
can be seen in Figure 4. Increasing the learning start time, the



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1211

(a) NSGA-II Term. 1 population size tuning time results. (b) NSGA-II Term. 1 population size tuning stiffness results.

Fig. 7: Optimizing NSGA-II model Term. 1 performance maximizing Ex.

time step that learning starts at, does not increase model perfor-
mance, but it does increase the total model run time because the
model must wait longer to begin learning from the data. Other-
wise the model performs well with many learning rates from
0.0005–0.1 and episode lengths 1–10. Table 5 details model
performance over a range of learning rates.

For Ey, the model requires more tuning, but the default pa-
rameters still work well. We use a low learning rate, 0.0005 in
the results. The model has some flexibility with learning rate,
but above 0.001 model performance decreases (as can be seen
in Table 6). We begin learning at time step 200, although the
model is somewhat insensitive to what time step learning be-
gins (as can be seen in Table 6). We use an episode length of
5, but the model also works well for other episode lengths. For
Ey, the model takes closer to 400 time steps to converge. Table
6 summarizes the model performance for a three ply laminate
over a range of learning rates and learning start times. All plots
of the DRL models use the best range of parameters specified
in this section.

4.4. Implementation details

Code was written in Python and run using Google Colab
Pro+ using the GPU hardware accelerator, standard GPU class,
and standard Runtime shape.

5. Future Work

This research is the first to apply DRL to optimize compos-
ite laminate stacking sequence. Our work opens many new di-
rections for research. Our DRL model is set up as follows: the
state is the current normalized stiffness modulus, the action is to
select a new stacking sequence, and state-action pairs are evalu-
ated with an offset, normalized stiffness as the reward function.
This model works well due to its ability to change stacking
sequence quickly. This is one way to define the DRL system.
Future research could explore alternative definitions, for exam-
ple, an RL algorithm where the state is the current stacking se-
quence, the action is to change one ply layer fiber orientation,

and the reward is normalized stiffness. Another direction for
future research is designing a custom DRL model specifically
made for optimizing composite stacking sequence.

Since this is the first DRL research in this direction, we lim-
ited the optimization properties to two single-objective cases.
This work could be extended to optimizing for a greater selec-
tion of mechanical and non-mechanical properties, as well as
optimizing for multiple properties simultaneously. In addition
to optimizing for multiple properties, another future direction
is to optimize for multiple independent loading cases, as well
as uncertainty in the loading cases.

Finally, the input could be designed to more fully repre-
sent complex composite parts, for instance, representing spe-
cific part properties and including additional composite part at-
tributes.

6. Conclusion

In this work, we present a method to use deep reinforcement
learning to model the optimal stacking sequence for fiber rein-
forced polymer composite laminates. The major contributions
of this work are a DRL algorithm that successfully optimizes
stacking sequence for composite plate stiffness, as well as a
comparison to a commonly used genetic algorithm (NSGA-II)
and two baseline models.

We show that optimal stacking sequence can be predicted us-
ing DRL to maximize longitudinal Young’s modulus. Our DRL
model successfully maximizes the stiffness modulus to 115GPa
and achieves stiffness values 5.7, 6.5, 10.7, and 15.5 standard
deviations above the average random stacking sequence for 3,
9, 32, and 70 plies respectively. Our DRL model performs sig-
nificantly better than the maximum of 1,000 random runs. The
NSGA-II algorithm optimizes the longitudinal stiffness modu-
lus to within 0.5%, while our DRL algorithm 100% optimizes
the longitudinal stiffness modulus. Although this performance
advantage of our DRL model over the NSGA-II model on this
relatively simple objective is small, as the optimization objec-
tive complexity increases, one would expect the performance
advantage to increase as well. The running time of our DRL



S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1212

Table 5: Summary of longitudinal stiffness tuning results for determining optimum learning rate (LR). The table reports the number of steps to 100% convergence.
All reported values are for learning starts (LS) at time zero, because although the results converge with larger LS values, the algorithm takes longer to converge.
We cap the model at 400 total time steps. We use an episode length of five. Learning rate (LR) varied in table. Results show the model is relatively insensitive to
hyperparameter tuning for the case of longitudinal stiffness.

Plies (n) LR = 0.1 LR = 0.05 LR = 0.01 LR = 0.005 LR = 0.003 LR = 0.001 LR = 0.0005
3 < 50 < 50 < 50 < 50 < 50 < 50 < 50
9 < 50 < 50 < 50 < 50 < 50 < 50 < 50
32 < 50 < 50 < 50 < 50 < 50 ∼ 50 − 400 ∼ 50 − 400
70 < 50 < 50 < 50 < 50 < 50 ∼ 50 − 400+ ∼ 50 − 400+

Table 6: Summary of transverse stiffness tuning results for determining optimum learning start time (LS) and learning rate (LR). The table reports the average and
maximum reward out of five runs (maximum possible reward 0.96). Learning starts (LS) and learning rate (LR) varied in table. We cap the model at 400 total time
steps. We use an episode length of five. Only in the best cases does transverse stiffness achieve 100% convergence, but it achieves relatively high convergence in
many cases. LS = 200 & LR = 0.001 or 0.0005 get the best results with ravg = 0.95, 99% convergence, and rmax = 0.96, 100% convergence.

LS LR = 0.01 LR = 0.005 LR = 0.003 LR = 0.001 LR = 0.0005
ravg rmax ravg rmax ravg rmax ravg rmax ravg rmax

100 0.66 0.73 0.68 0.89 0.94 0.96 0.93 0.95 0.94 0.95
200 0.73 0.78 0.81 0.95 0.85 0.95 0.95 0.96 0.95 0.96
300 0.95 0.95 0.95 0.95 0.86 0.95 0.77 0.84 0.80 0.85

model is far faster than the NSGA-II model, up to orders of
magnitude faster (e.g. on the largest number of plies).

Preliminary results show that our DRL model can also op-
timize more complex objective variables. In this work, we
demonstrate optimizing transverse stiffness as one example. Al-
though it takes longer for our DRL model and genetic algorithm
to optimize transverse stiffness, the DRL model still optimizes
transverse stiffness faster than the genetic algorithm.

Acknowledgements

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion. We thank Prof. Grace Gu and Prof. Sergey Levine for
the useful background on modeling composites and deep rein-
forcement learning in their respective courses. We thank Justin
Meserve and Bowen Zheng for useful discussions.

References

[1] Almeida Jr, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C., 2017. Stacking
sequence optimization in composite tubes under internal pressure based on
genetic algorithm accounting for progressive damage. Composite Struc-
tures 178, 20–26.

[2] An, H., Chen, S., Huang, H., 2019. Stacking sequence optimization and
blending design of laminated composite structures. Structural and Multi-
disciplinary Optimization 59, 1–19.

[3] Blank, J., Deb, K., 2020. pymoo: Multi-objective optimization in python.
IEEE Access 8, 89497–89509.

[4] Bloomfield, M.W., 2010. Efficient optimization of laminated composites.
Ph.D. thesis. University of Bristol.

[5] Cai, R., Jin, T., 2018. The effect of microstructure of unidirectional fibre-
reinforced composites on mechanical properties under transverse loading:
A review. Journal of Reinforced Plastics and Composites 37, 1360–1377.

[6] Cardozo, S.D., Gomes, H., Awruch, A., et al., 2011. Optimization of lam-
inated composite plates and shells using genetic algorithms, neural net-
works and finite elements. Latin American Journal of Solids and Structures
8, 413–427.

[7] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolution-
ary computation 6, 182–197.

[8] Diaconu, C.G., Sekine, H., 2004. Layup optimization for buckling of lam-
inated composite shells with restricted layer angles. AIAA journal 42,
2153–2163.

[9] Erdal, O., Sonmez, F.O., 2005. Optimum design of composite laminates for
maximum buckling load capacity using simulated annealing. Composite
Structures 71, 45–52.

[10] Fukunaga, H., Vanderplaats, G.N., 1991. Stiffness optimization of or-
thotropic laminated composites using lamination parameters. AIAA jour-
nal 29, 641–646.

[11] Gemi, L., 2018. Investigation of the effect of stacking sequence on low
velocity impact response and damage formation in hybrid composite pipes
under internal pressure. a comparative study. Composites Part B: Engineer-
ing 153, 217–232.

[12] Ghiasi, H., Fayazbakhsh, K., Pasini, D., Lessard, L., 2010. Optimum stack-
ing sequence design of composite materials part ii: Variable stiffness de-
sign. Composite structures 93, 1–13.

[13] Ghiasi, H., Pasini, D., Lessard, L., 2009. Optimum stacking sequence de-
sign of composite materials part i: Constant stiffness design. Composite
Structures 90, 1–11. doi:10.1016/j.compstruct.2009.01.006.

[14] Grenestedt, J., Gudmundson, P., 1993. Layup optimization of composite
material structures. Optimal design with advanced materials , 311–336.

[15] Haftka, R.T., Walsh, J.L., 1992. Stacking-sequence optimization for buck-
ling of laminated plates by integer programming. AIAA journal 30, 814–
819.

[16] Hajmohammad, M., Salari, M., Hashemi, S., Esfe, M.H., 2013. Optimiza-
tion of stacking sequence of composite laminates for optimizing buckling
load by neural network and genetic algorithm. Indian Journal of Science
and Technology 6, 5070–7.

[17] Harris, C.E., Morris, D.H., 1985. An evaluation of the effects of stacking
sequence and thickness on the fatigue life of quasi-isotropic graphite/epoxy
laminates. ASTM International.

[18] Herencia, J., Weaver, P., Friswell, M., 2007. Local optimisation
of anisotropic composite panels with t shape stiffeners, in: 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Ma-
terials Conference, p. 2217.

http://dx.doi.org/10.1016/j.compstruct.2009.01.006


S. Shonkwiler et al. / Manufacturing Letters 35 (2023) 1203–1213 1213

[19] Irisarri, F.X., Bassir, D.H., Carrere, N., Maire, J.F., 2009. Multiobjective
stacking sequence optimization for laminated composite structures. Com-
posites Science and Technology 69, 983–990.

[20] Jing, Z., Fan, X., Sun, Q., 2015a. Global shared-layer blending method for
stacking sequence optimization design and blending of composite struc-
tures. Composites Part B: Engineering 69, 181–190.

[21] Jing, Z., Fan, X., Sun, Q., 2015b. Stacking sequence optimization of com-
posite laminates for maximum buckling load using permutation search al-
gorithm. Composite Structures 121, 225–236.

[22] Jones, R.M., 2018. Mechanics of composite materials. CRC press.
[23] Kameyama, M., Fukunaga, H., 2007. Optimum design of composite plate

wings for aeroelastic characteristics using lamination parameters. Comput-
ers & structures 85, 213–224.

[24] Lansing, W., Dwyer, W., Emerton, R., Ranalli, E., 1971. Application of
fully stressed design procedures to wing and empennage structures. Journal
of Aircraft 8, 683–688.

[25] Li, C., Zheng, P., Yin, Y., Wang, B., Wang, L., 2023. Deep reinforcement
learning in smart manufacturing: A review and prospects. CIRP Journal of
Manufacturing Science and Technology 40, 75–101.

[26] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D., 2015. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971 .

[27] Lin, C.C., Lee, Y.J., 2004. Stacking sequence optimization of laminated
composite structures using genetic algorithm with local improvement.
Composite structures 63, 339–345.

[28] Marques, F., Natarajan, S., Ferreira, A., 2017. Evolutionary-based aeroe-
lastic tailoring of stiffened laminate composite panels in supersonic flow
regime. Composite Structures 167, 30–37.

[29] Miki, M., 1982. Material design of composite laminates with required in-
plane elastic properties. Progress in science and engineering of composites
2, 1725–1731.

[30] Moh, J.S., Hwu, C., 1997. Optimization for buckling of composite sand-
wich plates. AIAA journal 35, 863–868.

[31] Mohanavel, V., Suresh Kumar, S., Vairamuthu, J., Ganeshan, P., Nagara-
jaGanesh, B., 2021. Influence of stacking sequence and fiber content on
the mechanical properties of natural and synthetic fibers reinforced penta-
layered hybrid composites. Journal of Natural Fibers , 1–13.

[32] Nagendra, S., Haftka, R.T., Gurdal, Z., 1992. Stacking sequence optimiza-
tion of simply supported laminates with stability and strain constraints.
AIAA journal 30, 2132–2137.

[33] Nettles, A., 1994. Mechanics of laminated composites, in: NASA Ref.
Publ. Basic Mech. Laminated Compos. Plates. National Aeronautics and
Space Administration Washington, DC, pp. 11–23.

[34] Pagano, N., Pipes, R.B., 1971. The influence of stacking sequence on lam-
inate strength. Journal of composite materials 5, 50–57.

[35] Park, J., Hwang, J., Lee, C., Hwang, W., 2001. Stacking sequence design
of composite laminates for maximum strength using genetic algorithms.
Composite Structures 52, 217–231.

[36] Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E., 2019. Fiber-reinforced
polymer composites: Manufacturing, properties, and applications. Poly-
mers 11, 1667.

[37] del Rosario, Z., Fenrich, R.W., Iaccarino, G., 2019. Margin as model: Some
answers to” how many tests should i perform?”, in: AIAA Aviation 2019
Forum, p. 3554.

[38] Sandhu, R., 1971. Parametric study of optimum fiber orientation for fil-
amentary sheet. Technical Report. AIR FORCE FLIGHT DYNAMICS
LAB WRIGHT-PATTERSON AFB OH.

[39] Şerban, A., 2016. Fast and robust matlab-based finite element model used
in the layup optimization of composite laminates, in: IOP Conference Se-
ries: Materials Science and Engineering, IOP Publishing. p. 012103.

[40] Setoodeh, S., Abdalla, M.M., Gürdal, Z., 2006. Design of variable–stiffness
laminates using lamination parameters. Composites Part B: Engineering
37, 301–309.

[41] Sui, F., Guo, R., Zhang, Z., Gu, G.X., Lin, L., 2021. Deep reinforcement
learning for digital materials design. ACS Materials Letters 3, 1433–1439.

[42] Todoroki, A., Haftka, R.T., 1998. Stacking sequence optimization by a ge-
netic algorithm with a new recessive gene like repair strategy. Composites
Part B: Engineering 29, 277–285.

[43] Tsai, S.W., Hahn, H.T., 2018. Introduction to composite materials. Rout-
ledge.

[44] Wang, Z., Sobey, A., 2020. A comparative review between genetic algo-
rithm use in composite optimisation and the state-of-the-art in evolutionary
computation. Composite Structures 233, 111739.

[45] van de Werken, N., Tekinalp, H., Khanbolouki, P., Ozcan, S., Williams,
A., Tehrani, M., 2020. Additively manufactured carbon fiber-reinforced
composites: State of the art and perspective. Additive Manufacturing 31,
100962.

[46] Zheng, B., Zheng, Z., Gu, G.X., 2022. Designing mechanically tough
graphene oxide materials using deep reinforcement learning. npj Com-
putational Materials 8, 225.




