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A B S T R A C T

Accurate long-term energy consumption forecasting is crucial for efficient energy management in large
office buildings. Recent research highlights that deep learning approaches, including RNN, LSTM, and
transformer-based models, are at the forefront of promising advancements. They are unified in obtaining more
discriminative representations. The challenges lie in the complexity of data influenced by diverse factors such
as weather, building characteristics, and occupant behavior, etc., and the need to accurately model the intricate
patterns of time-series periodicity and trends. In this paper, we introduce SPAformer, an innovative end-to-
end deep learning model adept at unraveling and forecasting the intricate components of energy consumption
data. It is motivated by the hypothesis that decomposing energy consumption into detailed functional
categories and isolating trends and periodic components can significantly enhance forecasting accuracy. In
response, we propose spectra-patch attention (SPA) mechanism, which combines time and frequency signals,
to better capture the repeating patterns in lengthy data sequences. We have evaluated our approach on a
real-world granular dataset from a large commercial office building and demonstrated SPAformer’s superior
performance. By achieving a 12% improvement in prediction accuracy over state of the art attention-based
models, SPAformer marks a significant stride in energy forecasting. This work contributes to better-informed
decision making about energy saving strategies, emphasizing the model’s usefulness in the ongoing planning
and fine-tuning of building energy systems.
1. Introduction

The imperative for sustainable urban development has placed a
spotlight on the energy consumption of large office buildings, which
are significant contributors to urban energy demand [1]. In China,
for instance, nearly 28% of the nation’s total energy consumption is
attributed to buildings, a figure that is on an upward trajectory due
to the swift completion of new buildings and the ongoing improve-
ment in living standards [2]. This situation underscores the critical
need for China, as well as other nations, to prioritize the reduction
of energy consumption in buildings and enhance energy efficiency
measures [3]. Accurately forecasting long-term energy use within these
structures is crucial for effective energy management and conserva-
tion. However, the complexity of energy patterns and the influence of
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various unpredictable factors make long-term forecasting a formidable
challenge.

Previous research in energy consumption forecasting has primarily
focused on short-term [4] and medium-term predictions [5], leveraging
a range of methodologies from traditional statistical models to more
recent machine learning techniques [6,7]. Statistics-based models can
effectively model the short-term patterns of sequences and achieve the
accuracy of short-term forecasts. Limited by the reasonable selection of
autoregressive models and the high requirement for domain knowledge,
statistical modeling is not suitable for mining medium and long-term
patterns [8]. Deep learning methods, including RNN, LSTM and at-
tention mechanism-based models, have been successively proposed to
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data mining, AI training, and similar technologies. 
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Fig. 1. Periodic-trend series decomposition.

solve the sequence prediction problem, which brings hope to the predic-
tion of medium and long-term energy consumption [9]. In particular,
the attention mechanism, with its natural advantage in processing
sequence data, has been widely used in various time series prediction
tasks [10], including energy consumption prediction [11]. It is impor-
ant to note that compared to universal time series, building energy
onsumption data are affected by a variety of factors such as weather,
uilding characteristics, and occupant behavior. This makes the pat-
erns contained in building energy consumption data more complex.
revious models face the challenge of insufficient representation
apabilities when dealing with the prediction of building energy
onsumption, and are often difficult to cope with the dual chal-
enges of trend decomposition and periodicity detection of long
sequence energy consumption data.

The primary challenge in long-term energy consumption forecast-
ng lies in the intricate interplay between trend components and
periodic fluctuations, which are difficult to disentangle and predict
over extended period. As shown in Fig. 1, energy data is intertwined
by trends, cycles, and noise. Modeling based on observations captures
spurious correlations of unpredictable noise. This spurious correlation
is exacerbated when different representations learned by the model
become entangled [12]. In addition, most existing models lack the
ranularity to accurately reflect the diverse categories of energy usage
nd their unique patterns. It cannot accurately identify the direction
f building energy consumption [13]. Furthermore, the application of

attention mechanisms has been limited in their ability to simultane-
ously process and integrate time-domain and frequency-domain
information, which is essential for capturing the multifaceted nature
of energy consumption dynamics. Transformer variants mostly capture
the long-term dependence of energy consumption through time do-

ain information [14]. Although FEDformer [15] fuses the frequency
ignal into the transformer model through the frequency domain en-
ancement block, the lack of time domain information reduces the
epresentation ability of short periods and local trends. This gap in the
esearch landscape underscores the need for an innovative approach
hat can adeptly handle these complexities, paving the way for more
ccurate and reliable long-term energy forecasting methodologies.

To address the above challenges, we propose an end-to-end signal
ecomposition-based energy consumption prediction model for large
ffice buildings, namely SPAformer.

The model decomposes the raw long-series energy consumption
data into period and trend components via a sequence decomposition
module. This decomposition is pivotal as it aligns with our under-
tanding that energy consumption patterns are inherently composed
f these two elements, each requiring a distinct approach for accurate
orecasting. As the main component of long-term series, fluctuations in

rend components are easier to learn by the model. Therefore, we use a

2 
simple Multilayer Perceptron (MLP) to predict the trend term to prevent
verfitting. This choice is justified by the MLP’s proven efficiency in

capturing linear relationships, making it an ideal fit for trend prediction
where complexity does not necessarily equate to accuracy.

For the prediction of periodic items, we consider that the dataset
s not particularly large, which suggests that the risk of overfitting

is acceptable. Therefore, the encoder–decoder architecture is used for
prediction of periodic components. This architecture’s ability to model
complex dependencies between time steps makes it especially suitable
for capturing the nuanced patterns within periodic data. Experimental
results also show that this architecture performs better than direct
rediction, providing empirical evidence for its effectiveness.

In order to capture the complex periodic patterns of long-distance
nergy consumption sequences, we propose the Spectral-Patch Atten-
ion (SPA) mechanism to fully exploit the ability of time-domain and
requency-domain signals to capture periodic patterns. This mechanism

is crucial for understanding the multifaceted nature of energy consump-
tion data, where different frequency-domain signals reflect different
characteristics of time-series data. The reasoning behind focusing on
low-frequency components for long-period predictions is that they are
more influential in shaping the overall trend, a hypothesis supported
by our preliminary analyses. Therefore, in SPA, we propose a multi-
scale frequency multi-head self-attention module to capture both long
and short periods. This module’s design is inspired by the notion
that accurately forecasting energy consumption necessitates a nuanced
understanding of its temporal dynamics across various scales.

In addition, inspired by PathTST [16], we introduce the patch self-
attention mechanism into the SPA module to consider time-domain
signals. This inclusion is justified by the need to better capture local
ependencies and non-periodic features, which are often overshadowed
y broader trends but are crucial for high-resolution forecasts. The
atch self-attention mechanism represents our commitment to a holistic
pproach, ensuring that both global and local patterns are given due
onsideration in our model.

In summary, the challenges of accurately predicting energy con-
sumption in large office buildings are multifaceted, involving com-
lex patterns of energy use that are influenced by both predictable

and unpredictable variables, how to disentangle trends, cycles, and
noise in energy data, and how to simultaneously process and integrate
time-domain and frequency-domain information to cope with the dual
challenges of trend decomposition and periodicity detection in long
sequence energy consumption data. Recognizing the gap in existing
methodologies for handling long-series data with both trend and peri-
odic variations, we successively proposed the sequence decomposition
module and the spectral-patch attention (SPA) mechanism. In addition,
we proposed to integrate them in an encoder–decoder architecture.
This study makes an important contribution to the field of energy
consumption prediction for large office buildings, focusing on the novel
method of SPAformer model encapsulation.

In short, we summarize the main contributions of this work as
follows:

∙ Our technical innovation lies in the development of SPAformer,
a state-of-the-art model that integrates several novel components
for enhanced forecasting accuracy. At its core, SPAformer uti-
lizes a signal decomposition-based approach, separating energy
consumption data into trend and periodic components. This is
complemented by the introduction of the spectral-patch attention
(SPA) mechanism, which adeptly captures complex periodic pat-
terns through a nuanced analysis of time-domain and frequency-
domain signals. This dual focus on decomposition and attention
mechanisms represents a significant leap forward in predictive
modeling.

∙ We have subjected SPAformer to rigorous evaluation, utilizing
a robust dataset to benchmark its performance against existing
models. This evaluation not only demonstrates SPAformer’s su-
perior capability in accurately forecasting energy consumption
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but also validates the effectiveness of our novel technical con-
tributions. Through extensive testing, including comparisons to
baseline models and assessments under various scenarios, our
work provides a solid foundation for the practical application and
future development of energy consumption forecasting models.

∙ Our model achieves (𝐿 log𝐿) complexity. In addition,
SPAformer achieves state-of-the-art results in both memory con-
sumption and time efficiency on real devices. At the same time,
we further evaluated the model on 6 popular benchmark datasets,
verifying the strong generalization ability and training stability of
SPAformer. We used multiple indicators such as MSE, MAE and
KS test to evaluate the performance of the model. Through com-
prehensive and detailed evaluation, our work provides support
for the application and development of a wide range of long-time
series prediction models.

2. Related work

The domain of energy consumption forecasting, particularly for
large office buildings, has witnessed a variety of methodological ad-
vancements aimed at enhancing prediction accuracy and reliability.
This body of work spans from traditional statistical methods to more
recent machine learning and deep learning approaches, each contribut-
ing unique insights and tools for tackling the complex dynamics of
energy usage. The evolution of these methodologies reflects an increas-
ing emphasis on handling high-dimensional data, capturing temporal
dependencies, and addressing the challenges of non-linear patterns in
energy consumption. Notably, the integration of attention mechanisms
and the decomposition of time series into interpretable components
have emerged as significant themes. These techniques aim to improve
model performance by providing nuanced analysis capabilities and
facilitating the understanding of underlying consumption patterns. Ad-
ditionally, comparative studies have underscored the importance of
thorough evaluation frameworks, emphasizing the need for models
to be tested across diverse settings and conditions to validate their
eneralizability and effectiveness.

2.1. Time-series decomposition techniques

Time-series decomposition is an important strategy for analyzing
uilding sub-item energy consumption. The sequence is usually decom-
osed into three components, including trend term, period term and
esidual [17]. The trend term reflects the overall trend of the time-
eries without considering seasonality and irregularity [18]. The period

term reflects the periodicity of the time-series. It is usually associated
with time intervals such as daily, weekly, monthly, yearly, etc. The
residual reflects the part of the time-series that is not explained by trend
and periodicity, such as noise, mutations, etc. For long-term sequence
tasks, sequence decomposition is performed before predicting future
equences. Then different modeling methods are used according to the

different attributes of each component.
Our survey found that in the field of building, a large number

f previous studies have used sequence decomposition strategies to
redict energy consumption. D.Liu et al. [19] used a joint algorithm
f SVR and empirical mode decomposition (EMD) to predict building
nergy consumption. This strategy can effectively enhance the model’s
bility to capture sequence patterns while reducing the complexity
f sequence prediction. C.Zhou et al. [20] proposed a new multiple

decomposition integration method based on residual compensation,
which decomposes energy consumption into trends and residual. This
tudy uses a linear regression model to predict the trend sub-series, and
 triple exponential smoothing model to evaluate the low-frequency

approximation residual sub-series. Finally, the sum of sub-sequence
predictions is used as the total energy consumption prediction result.
 t

3 
In recent studies, researchers have realized the important role of
sequence decomposition in transformer prediction of time-series. Aut-
oformer [21] first introduced a seasonal-trend decomposition architec-
ture in transformer, which uses a simple moving average method. The
esults show that the introduction of the decomposition architecture
ignificantly improves the model performance by 50%–80%. CoST [12]

proposes to learn different feature representations through sequence
decomposition, which applies contrastive learning methods to learn
period and trend representations. SSDNet [22] combines the trans-
former architecture with state space models to provide probabilistic and
interpretable forecasts, including trend and seasonality components and
previous time steps important for the prediction.

However, they did not fully consider the respective characteristics
of cycles and trends. These studies mixed the two predictions in the
encoder–decoder, which did not isolate the periodicity and trend pre-
diction well, resulting in the entanglement of the two. Research [23]
shows that (I) For the prediction of periodic components, frequency-
domain attention models are more sample efficient than time-domain
attention models, as softmax with exponential terms correctly amplifies
the dominant frequency pattern in Fourier space. (II) For trend data,
attention models often exhibit poor generalization, as attention models
naturally interpolate rather than infer context.

2.2. Predictive modeling in time-series analysis

According to the prediction range, energy consumption prediction
asks can be divided into short-term, medium-term and long-term
rediction. However, long sequences usually contain more complex

patterns than short sequences, and previous research mainly focused on
hort-term or medium-term predictions of energy consumption, such as
nergy consumption in the next day or week. If we can achieve accurate
redictions of energy consumption for the next few months or even
onger, policymakers can formulate more effective energy management
nd energy-saving policies.

2.2.1. Overview of long time-series prediction challenges
Commercial office building energy consumption, as a natural time-

series data, contains building thermal inertia, periodicity and time
lag [24]. The periodicity of energy consumption is usually a com-
lex pattern of mixed short and long term. The short-term periodicity

patterns include daily, weekly cycles, etc [25]. For example, building
chillers will typically operate at night and shut down during the day
due to the effects of a stepped electricity tariff [26]. Commercial
ffice buildings, which are staffed by mostly office workers, have a

significant difference in energy consumption between weekdays and
weekends. Weekday energy consumption is greater than the weekend,
so there is a clear weekly cycle [27]. Affected by the different cli-
mates in the four seasons in the north, there is a seasonal cycle in
building energy consumption. For example, cold stations consume more
electricity in the summer, while hot stations consume more in the
winter [28]. Therefore, decomposing the series and predicting complex
periodic patterns individually is crucial to improve office building en-
ergy consumption predictions. Therefore, improving the model’s ability
to capture both short and long periods of long sequences is critical to
improving prediction accuracy.

The survey found that in order to capture the complex periodic
atterns in the sequence, previous studies on building energy consump-

tion prediction considered different information domains, which were
divided into three categories: (I) time-domain (II) frequency-domain
(III) hybrid time-frequency.

2.2.2. Comparative review of time-domain prediction models
In the time domain, we can recognize the growth or decline of

rends, periodic changes, etc. Time domain information is important
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to capture the dynamic characteristics of the sequence, which provides
irect information about how the signal changes over time. Most of
he previous studies predict building energy consumption from a time
omain perspective. Rahman et al. [29] developed and optimized

deep recurrent neural network (RNN) models from a time domain
erspective, aiming to predict medium- and long-term (≥ 1 week)

electricity load in hourly units. The paper also analyzed the relative
performance of the model for different types of electricity consumption
patterns and used deep NN to perform imputation on an electric-
ity consumption dataset containing segments of missing values. Peng
et al. [30] proposed a spatial–temporal feature extraction framework
that integrates spatial and temporal information to capture the consis-
ency of energy consumption data. This method achieves high-precision

demand prediction at the user level by considering the correlation of
energy consumption patterns among different users. Li et al. [31] used

avelet transform to filter the raw data and separate the daily periodic
patterns and residuals, and then the predictions of the date patterns
nd residuals were combined to obtain the final prediction.

Time domain information of time series is also widely used in trans-
former variants. Time domain information of time series is also widely
used in transformer variants. For example, PatchTST [16] provided a
olution for multivariate time series forecasting in the time domain: (I)
t divides the time-series into sub-sequence-level patches as the input
abels of the Transformer, which better preserves local semantic infor-
ation. (II) Channel independence: each channel contains a univariate

ime-series, and all channels share the same embedding and weights to
redict multivariate time-series data.

2.2.3. Assessment of frequency-domain prediction approaches
In the frequency domain, we decompose the different frequency

omponents of the signal by converting the time-domain signal into
 frequency-domain representation via Fourier transform or wavelet
ransform. This helps the model to detect hidden periodic patterns in
he series, such as daily, weekly and monthly periodicity in building
nergy consumption data. Yan et al. [32] proposed an ultra-short-term
hotovoltaic power prediction model based on optimal frequency do-
ain decomposition and deep learning. They decomposed photovoltaic
ower into low-frequency and high-frequency components, and utilized
onvolutional neural network (CNN) to predict them, and then obtained

the final prediction results through additive reconstruction.
Recently, some researchers have found that combining the fre-

uency domain with the attention mechanism can further improve the
ccuracy of long-term sequence prediction. FEDformer [15] proposed

a Fourier frequency domain enhancement block to capture important
structures in time series through frequency domain mapping. ETS-
former [33] selects top-K largest amplitude modes as frequency domain
ttention, and combines it with exponential smoothing attention to

replace the transformer’s self-attention mechanism.

2.2.4. Hybrid time-frequency prediction methods
Although time-domain analysis is able to capture the dynamic char-

cteristics of the sequence, it cannot fully capture the frequency char-
cteristics for some highly periodic time series because it ignores the
nformation in the frequency domain. On the contrary, focusing only
n the frequency domain information will ignore the dynamic changes
n the time domain. Therefore, the joint time-frequency approach is
roposed to fill the gap between the two. Zhang et al. [34] proposed to
ecompose the electricity load into several components. Then a hybrid
odel based on improved empirical mode decomposition (IEMD), au-

oregressive integrated moving average (ARIMA) and wavelet neural
etwork (WNN) was designed. The model was then optimized by
he fruit fly optimization algorithm (FOA) to improve the prediction
ccuracy. Mounir et al. [35] proposed a power forecasting method

based on EMD and bidirectional LSTM, in which EMD separates the
time series into components of different resolutions, and LSTM predicts
each component separately.
 m

4 
However, models based on attention mechanisms are mostly stud-
ed from a single perspective of time domain or frequency domain.
his cannot fully capture the multi-scale features of long time se-
ies. In addition, the frequency-domain attention mechanism ignores
he time-domain information, which is important for capturing the
ocal and dynamic features of the sequence. Therefore, we propose a
ime-frequency joint method and consider the impact of multi-scale
requency domain information on long-term series prediction in the
requency domain.

2.3. Advances in multivariate energy prediction

Building sub-item energy consumption data, as a multivariate time-
series, is predicted by many methods that can be categorized into
three groups: (I) physical modeling (II) statistical and shallow learning

ethods (III) deep learning methods. Our research focuses on deep
learning methods.

2.3.1. Statistical and shallow learning methods based multivariate modeling
for energy prediction

In the past decades, there have been a large number of studies using
statistical methods to predict building energy consumption, such as
autoregressive integrated moving average (ARIMA) [36] and support
vector regression (SVR) [37]. Yuan et al. [38] used two univariate
models, the ARIMA model and the GM (1,1) model, to predict China’s
primary energy consumption. ARIMA-ANFIS [39] uses three models
to predict annual energy consumption in Iran, applying the AdaBoost
adaptive boosting) data diversification model to address data deficien-
ies. However, most of such models are limited to linear univariate
ime-series and cannot solve the MTS problem well. In order to predict
TS data, vector autoregressive (VAR) models based on autoregressive
ere proposed. Later vector autoregressive moving average (VARMA)
odel, which combines VAR and moving average, was proposed. For

xample, GM(1,1)-VAR(1) model [40], which combines a VAR and a
gray model, is proposed for forecasting residential electricity demand in
Cameroon. Although VAR and VARMA are widely used in multivariate
time-series forecasting tasks, both are linear regression models that
cannot capture the nonlinear relationships in time-series data. Based on
this, models based on kernel methods [41], ensembles [42], Gaussian
processes [43] have been used for multivariate time-series forecasting.
Although these models can express nonlinear relationships to a certain
xtent, the settings of kernel functions and related parameters need
o be based on domain knowledge, so they cannot adapt to MTS data
nder different tasks.

2.3.2. Emerging deep learning techniques in multivariate prediction
With the development of deep learning, many neural network mod-

els have been proposed and applied to multivariate building energy
consumption prediction tasks. A large number of studies have shown
that deep learning-based methods perform better than statistical meth-
ods. Mainstream models addressing multivariate time-series prediction
can be broadly categorized into three groups: (I) Hybrid models based
on CNN and RNN, where CNN capture cross-dimensional dependen-
cies and RNN capture cross-temporal dependencies. (II) Using Graph
Neural Network (GNN) to capture cross-dimensional dependencies and
using time-series convolution (e.g., RNN, LSTM, etc.) to capture cross-
time dependencies. (III) Transformer based on attention mechanism
aptures both cross-dimensional and cross-time dependencies.
Hybrid Models based on CNN and RNN for MTS Forecasting.

CNN is widely used in the image domain due to their strong local
erception and multi-layer abstraction capabilities. In addition, the
onvolution operation in CNN can learn a set of dimension-specific
eatures from each channel and then capture cross-dimensional depen-
encies by fusing the outputs of these channels. This multi-channel
rocessing can better utilize the correlations between different di-

ensions in the input data. As a result, CNN is also widely used to
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capture cross-dimensional dependencies in building energy consump-
tion data. RNN with its recurrent connection structure makes it memory
apable to remember past information and use it for current compu-
ation [44]. Therefore, RNN is widely used to process sequential data

such as machine translation, speech recognition, time-series prediction,
etc. However, RNN faces gradient vanishing and gradient explosion
problems, and its short-term memory makes it difficult to capture long-
term dependencies. Therefore, LSTM that incorporate gate structures
has been proposed to solve these problems. Due to the respective
strengths of CNN and LSTM, many studies have fused them to improve
the model to enhance multivariate time-series prediction accuracy.
A large number of previous studies have applied such methods to
energy consumption prediction in the building field [45,46]. For ex-
ample, Kim et al. [45] proposed a CNN–LSTM hybrid network model
to effectively predict housing energy consumption. Experiments show
that a neural network combining CNN and LSTM can extract complex
energy consumption features. CNN layers can extract features among

ultiple variables that affect energy consumption, while LSTM layers
are suitable for modeling temporal information of irregular trends in
ime-series components.
GNN for MTS Forecasting. GNN has achieved great success in deal-

ing with spatial dependencies between entities in a network. Another
spatio-temporal graph neural network (STGNN) based on GNN has
been proposed and offers great advantages in dealing with multivariate
ime-series data. This form of neural network was originally proposed

to solve the traffic prediction problem [47,48]. Its input is a multi-
variate time-series with an external graph structure, which describes
the relationships between variables in the multivariate time-series.
In STGNN, dimensional dependencies between nodes are captured by
graph convolution, while temporal dependencies between historical
states can be captured by RNN. STGNN is widely used in transporta-
tion, finance, medicine, and other fields. In the field of buildings,
the main object of previous work is the spatial dependence between
different buildings [49,50], but there are fewer studies on multivariate
time-series data for a single building. It is worth noting that many GNN-
ased MTS prediction methods assume that the predicted value of a
ingle variable is affected by all other variables, ignoring the causal
elationship between variables. To address this issue, CauGNN [51]
ntroduces neural Granger causality to GNN and uses convolutional

neural network filters with different perceptual scales for time-series
feature extraction.

Transformers for MTS Forecasting. Last few years, many variants
of transformer have been proposed to significantly improve the per-
formance of various tasks, such as natural language processing [52],
computer vision [53], speech recognition [54], etc. Transformers have
powerful modeling capabilities for long-term dependencies and cor-
relations in sequence data. Recently, many transformer-based models
ave been proposed for MTS prediction and have shown great perfor-
ance [55–57]. Preformer [56] introduces a novel and efficient multi-

scale segmentation correlation mechanism, which divides the time
series into several segments and uses segmentation-based correlation
attention to replace point-based attention.

The quadratic complexity of the attention mechanism leads to high
model training costs, which prevents its direct application to long
eries prediction. Many models have been proposed to reduce the time
omplexity. For example, Informer [55] uses the low-rank property of
he self-attention matrix to reduce complexity, and it selects 𝑄 with
igh similarity based on the similarity between 𝑄 and 𝐾. In addition,

timestamp information is an important component of multivariate time
series, such as time of day, day of week, day of month, month of
ear, etc. G.Zerveas et al. [57] introduce temporal information via a
earnable embedding layer that encodes timestamps into positional en-
odings, while the layer learns the embedding vectors for each location
long with other model parameters.

In order to model periodic patterns in time-series data at differ-
nt time scales, a hierarchical structure has recently been introduced
5 
into transformer. Pyraformer [58] devised an attention mechanism
based on a tree structure, where fine-grained nodes correspond to the
original sequences and coarse-grained nodes denote the low-resolution
sequences. Pyraformer proposes an inter-scalar tree structure to capture
features at different resolutions, while in-scale neighboring connections
simulate temporal dependencies at different scales. In addition to the
bility to integrate information at different multi-resolutions, hierarchi-
al architectures have the advantage of being computationally efficient,

especially for long time sequences. Informer [55] takes into account
sequence patterns at different resolutions by adding a max pooling
layer with a stride of 2 between attention blocks to downsample the
sequence to half of it. However, to the best of our knowledge, there are
no transformer-based studies that consider multi-scale periodic patterns
of building energy consumption sequences from a frequency domain
perspective.

3. Dataset and problem formulation

3.1. Dataset

To address the problem of forecasting energy demand with high
precision, we collected a real-world high-resolution energy demand
dataset from a typical large commercial office complex in Beijing,
China. The modeling drawings of the office buildings are shown in
(Fig. 2a). The building has 18 floors, with a standard floor area of more
han 3400 square meters. There are 849 parking spaces, and nearly
alf of them are equipped with charging piles. At the same time, the
uilding is equipped with air conditioning systems, VAV variable air
olume systems, PM2.5 elimination systems, etc. (Fig. 2b) is the VAV

sensor layout on the 16th floor of the building.
The commercial office building is equipped with a state-of-the-art

ensor system that captures real-time data, ensuring the integrity and
igh resolution of our dataset. This dataset encompasses three years

of hourly energy consumption data, from July 1, 2020, to July 1,
2023, yielding a total of 13,140 data points. Energy usage within the
uilding is categorized into 12 distinct areas (Fig. 3), including energy
onsumption for the heating and cooling stations, air conditioning
erminals, ventilation systems, elevators, water pumps, water features,
itchens, information centers, electric vehicle charging stations, cine-
as, lighting and sockets, and corridor emergency lighting. Detailed

statistical information of this dataset can be found in Table 1.
This dataset is instrumental in validating our approach, providing

 representative cross-section of energy usage patterns commonly ob-
erved in such settings. Its size and scope are particularly well-suited

for evaluating the performance of sophisticated deep learning models,
which require substantial amounts of detailed data to capture and
learn from the complex, nonlinear interplay of factors affecting energy
emand. By leveraging this typical yet high-resolution, reliable, and

extensive dataset, our research stands to make significant strides in the
ccurate prediction of energy usage, offering potential for substantial
dvancements in energy management practices for large commercial
uildings.

3.2. Problem formulation

In multivariate time series forecasting of building energy consump-
ion, we aim to predict the future time series 𝑿̂ = 𝑋𝐿+1∶𝐿+𝜏 ∈ R 𝜏 × 𝑑𝑥

iven the historical series 𝑿 = 𝑋1∶𝐿 ∈ R𝐿× 𝑑𝑥 , i.e.,

𝑿̂ = 𝑓 (𝑿). (1)

where 𝜏, 𝐿 are the number of future and past time steps, respectively,
nd 𝑓 (⋅) denotes the prediction mapping function. 𝑑𝑥 is the number of
imensions, and 𝑑𝑥 = 12 in this work represents the building energy
onsumption of 12 categories.

Additionally, the input signal can be combined with timestamp
information, such as year, month, day, etc. In this work, instead of
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Table 1
Statistical information on the energy consumption of the 12 categories in 2022. The table sorts all categories of energy consumption from large to small according to the mean
value.

Energy consumption category Maximum values (kWh) Minimum values (kWh) Mean value (kWh) Standard deviation (kWh)

Lighting sockets 942.49 105.33 518.35 226.99
Heating and cooling stations 2299.11 24.14 354.10 612.39
Information centers 445.98 156.56 354.05 32.94
Air conditioner terminals 586.71 16.80 192.78 151.70
Ventilation 303.05 45.93 151.65 48.61
Kitchens 289.37 8.36 105.34 80.76
Elevators 80.24 4.44 32.24 18.69
Cinemas 79.10 3.12 26.89 21.70
Corridor emergency lighting 18.47 6.80 14.02 1.04
Charging piles 108.57 0.03 12.39 18.08
Water landscapes 34.88 4.09 12.23 4.18
Water pumps 40.61 3.35 11.86 3.89
Fig. 2. (a) Modeling diagram of a typical large commercial office building in Beijing, China. The building has 18 floors, 80 m high and 96,983 square meters. (b) The VAV system
sensors layout on the 16th floor of the building. The parameters read by the sensors include: actual regional temperature, set temperature, air supply volume, valve opening and
other parameters.
Fig. 3. Hourly resolution energy consumption curves for 12 categories in 2022.
directly treating the timestamp as a separate dimension, we encode
it into the energy consumption data with the aim of improving pre-
diction performance. Formally, we define 𝑻̂ = 𝑇𝐿+1∶𝐿+𝜏 ∈ R 𝜏 × 𝑑𝑡 and
𝑻 = 𝑇 ∈ R𝐿× 𝑑𝑡 as the future and past timestamp information
1∶𝐿

6 
respectively, where D is the dimension of the timestamp. We introduce
a learnable nonlinear embedding layer to map 𝑿 and 𝑻 to the latent
space: 𝑿, 𝑻 → 𝐻 ∈ R𝐿× 𝑑𝑚𝑜𝑑 𝑒𝑙 , where 𝑑𝑚𝑜𝑑 𝑒𝑙 represents the latent space
dimension. See Section 4 for details.
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Fig. 4. SPAformer network framework. (a) Collecting energy consumption data from Rongke commercial buildings through sensors. The dataset is preprocessed, including missing
value filling, aggregation time frequency and data normalization. We feed the processed dataset into the SPAformer network for model training. (b) Spectra-Patch Attention (SPA)
mechanism including multi-scale frequency self-attention, patch self-attention and patching operation.
4. Methodology

In this chapter, we will introduce the overall structure of SPAformer.
Then each module is introduced in detail, including data preprocessing,
time encoding, sequence decomposition block, trend prediction, cycle
prediction and pectra-patch attention (SPA) mechanism.

4.1. Overview

The accuracy of building energy data collection is highly dependent
on the stability of the sensors. Uncertain factors in the collection
process cause problems such as local missing data and noise. We
use various preprocessing methods to improve the accuracy of the
input data, as shown in Fig. 4. We then feed the processed data
into a sequence decomposition block to achieve period and trend
disentanglement. Energy consumption data is highly correlated with
time information. We propose to encode the temporal information
through an embedding layer and embed it into the period and trend
components respectively. After that, the trend component undergoes
the ReVIN module to solve the distribution bias and undergoes the
MLP to learn the future trend. The periodic components embedded
with temporal information are fed into the encoder to learn periodic
representations. In the encoder, we propose SPA, which collaboratively
utilizes time-domain and frequency-domain signals to enhance the
ability to capture multi-scale periodic patterns of long sequence data.
At the same time, the early stage of the decoder uses the same method
as the encoder. Then, patch-cross attention is used to improve the
similarity between the latent space states of the decoder and encoder.
Finally, we aggregate trend and cycle forecasts to obtain future energy
consumption series. The detailed introduction and formula definitions
of each module are provided below.

4.2. Data preprocessing

As part of the modeling process, preprocessing input data can
improve the accuracy and reliability of data prediction results. The
collection of building energy consumption data is highly dependent on
the stability of the sensor network, making the process subject to many
uncertainties. The process can lead to problems such as incomplete,
noisy, and inconsistent stored data. This study uses moving average
7 
and normalization methods to preprocess building energy consumption
data, as shown in (Fig. 4a):

1. Missing value filling: Missing values and outliers are filled in
through the moving average method, and exponential weighting
is used to calculate the mean, which gives greater weight to the
nearest data points.

2. Aggregation time frequency: The original dataset is times-
tamped at 15 min, which is too fine-grained for our research.
Therefore, we aggregate it to 1-hour timestamps by downsam-
pling.

3. Data standardization: Standardization can reduce model pre-
diction errors and improve convergence speed without changing
the distribution of original data. We use the library function
StandardScaler in sklearn to calculate the mean and standard
deviation of each dimension of the training set, and then apply
them to both the training set and the test set.

4.3. Sequence decomposition block

Long series data of building energy consumption need to be disen-
tangled from the intertwining of cycles and trends and to learn complex
temporal patterns. We adopt the idea of sequence decomposition to
decompose the sequence into periodic and trend components. These
two parts reflect the long-term progression and cyclical fluctuations of
the series respectively. Specifically, we use a moving average to smooth
the periodicity to get the trend, and then subtract the trend from the
original series to get the periodicity. Assuming that the past observation
is 𝒙 ∈ R𝐿× 𝑑𝑥 , where 𝐿 and 𝑑𝑥 are the input sequence length and
dimension respectively. The process is defined as:
𝑥𝑡 = AvgPool(Padding(𝒙)),
𝑥𝑠 = 𝑥 − 𝑥𝑡.

(2)

where 𝑥𝑠, 𝑥𝑡 ∈ R𝐿× 𝑑𝑥 are the period and trend component respectively.
We perform a mean padding operation on the original sequence, and
then use AvgPool(⋅) to perform a moving average to obtain the trend
term.
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4.4. Time embedding

There is a strong correlation between office building energy con-
sumption data and time characteristics. It is a prerequisite that the time
data of the future sequence is known. Reasonable embedding of time
information can effectively improve the accuracy of the model. This
paper proposes to encode and embed different temporal features into
trend and period components through an embedding layer.

We project the trend and period components into the latent space
separately and fuse the temporal information 𝒙𝑡𝑖𝑚𝑒 ∈ R𝐿× 𝑑𝑡 , where
𝑑𝑡 = 7 denotes the dimension of the timestamp sequence, including
hours of the day, days of the week, days of the month, weeks of the
month, days of the year, weeks of the year, months of the year at each
time point. The process is defined as:
𝑥𝑡,𝑒𝑚𝑏𝑒𝑑 = Embedvalue(𝑥𝑡) + Embedtime(𝒙𝑡𝑖𝑚𝑒).

𝑥𝑠,𝑒𝑚𝑏𝑒𝑑 = Embedvalue(𝑥𝑠) + Embedtime(𝒙𝑡𝑖𝑚𝑒).
(3)

where 𝑥𝑡,𝑒𝑚𝑏𝑒𝑑 , 𝑥𝑠,𝑒𝑚𝑏𝑒𝑑 ∈ R𝐿× 𝑑𝑚𝑜𝑑 𝑒𝑙 are the trend and period components
obtained by the sequence decomposition block respectively and 𝑑𝑚𝑜𝑑 𝑒𝑙
s the dimension of the latent space. We use two linear layers for
he embedding layer Embed(⋅) to project multi-dimensional time series
nd timestamp sequences into the latent space with the same number
f channels. The same embedding layer is applied in the subsequent
ecoder part.

4.5. Trend forecast

The attention model cannot extrapolate linear trends well and has
arge errors because the natural attention mechanism works by interpo-
ating context history. TFDformer [23] also theoretically proves that for

trend data, with the polarization effect of softmax, the attention score
emphasizes low-frequency components more and produces misleading
reconstruction results. In contrast, MLP perfectly predicts this trend
signal. Therefore, for the prediction of trend items, we use a five-layer
MLP to predict future trends. The symbols are defined as follows:

𝑥𝑡𝑟𝑒𝑛𝑑 = RevIN(MLP(RevIN(𝑥𝑡,𝑒𝑚𝑏𝑒𝑑 ))). (4)

where 𝑥𝑡𝑟𝑒𝑛𝑑 ∈ R 𝜏 × 𝑑𝑥 is the prediction result of the trend predic-
tion branch in SPAformer for the future trend and 𝜏 is the sequence
prediction length.

4.6. Period forecast

As shown in (Fig. 4a), we use an encoder–decoder architecture
to predict periodicity. In the encoder, we propose the spectra-patch
attention mechanism, which captures the mixed patterns of long and
hort periods while effectively capturing the short-range dependencies
f time series. Specifically, we first feed the periodic component to the

N-layer encoder:
𝑥𝑙 ,1𝑒𝑛 = SPA(𝑥𝑙−1𝑒𝑛 ),
𝑙 ,2
𝑒𝑛 = Nor m(FeedFor war d(𝑥𝑙 ,1𝑒𝑛 ) + 𝑥𝑙 ,1𝑒𝑛 ),
𝑥𝑙𝑒𝑛 = 𝑥𝑙 ,2𝑒𝑛 , 𝑙 = 1, 2,… , 𝑁 .

(5)

where 𝑥0𝑒𝑛 = 𝑥𝑠, and 𝑥𝑙𝑒𝑛 denotes the output of the 𝑙th encoder layer.
PA is the spectra-patch attention module, and its input and output
re both in the time domain. We will describe SPA in detail in the
ext subsection, which replaces the classic point-wise self-attention
echanism. FeedFor war d represents feed-forward neural network, and
or m denotes the usual tricks after residual connection, including linear
apping, activation function, dropout, etc.

In the decoder, we similarly introduce the SPA module. At the same
ime, we propose the patch cross-attention mechanism to guide the

model to improve the prediction accuracy by increasing the similarity
between the hidden space states of the decoder’s input sequence and
 d

8 
the encoder’s input sequence. Specifically, we fill the future part of the
periodicity with zeros and feed it to the M-layer decoder:
𝑥𝑙 ,1𝑑 𝑒 = SPA(𝑥𝑙−1𝑑 𝑒 ),
𝑙 ,2
𝑑 𝑒 = Nor m(FeedFor war d(𝑥𝑙 ,1𝑑 𝑒 ) + 𝑥𝑙 ,1𝑑 𝑒 ),
𝑙 ,3
𝑑 𝑒 = Pat chCr ossAt t ent ion(𝑥𝑙 ,2𝑑 𝑒 , 𝑥𝑁𝑒𝑛),
𝑙 ,4
𝑑 𝑒 = Flat t en(Nor m(FeedFor war d(𝑥𝑙 ,3𝑑 𝑒 ) + 𝑥𝑙 ,3𝑑 𝑒 )),

𝑥𝑙𝑑 𝑒 = 𝑥𝑙 ,4𝑑 𝑒 , 𝑙 = 1, 2,… , 𝑀 .

(6)

where 𝑥0𝑑 𝑒 = Padding(𝑥𝑠), which means padding the future period
components with zeros as input to the decoder, and 𝑥𝑙𝑑 𝑒 denotes the
utput of the 𝑙-th decoder layer. Pat chCr ossAt t ent ion is the patch cross-
ttention mechanism in the decoder, which calculates the similarity
etween the decoder and encoder sequences at the patch level. Flat t en

means to unfold the output of the cross-attention mechanism according
to multiple-heads, and then connect a linear layer to map to the target
sequence length.

Finally, we add the predictions from the trend branch and the
eriodic branch to get the final prediction output, i.e. 𝒙̂ = 𝑥𝑡𝑟𝑒𝑛𝑑 +

𝑥𝑀𝑑 𝑒 , where 𝒙̂ ∈ R 𝜏 × 𝑑𝑥 . We choose mean squared error (MSE) as the
ptimizer to measure the discrepancy between the prediction and the
round truth. The loss in each dimension is computed and averaged
ver 𝑑𝑥 time series to get the overall target loss:

 = E𝑥
1
𝑑𝑥

𝑑𝑥
∑

𝑖=1
‖𝒙̂(𝑖)𝐿+1∶𝐿+𝜏 − 𝒙(𝑖)1∶𝐿‖

2
2. (7)

4.7. Spectra-Patch Attention (SPA) module

The long-term series of building energy consumption has complex
eriodic and local dynamic change patterns. We propose the Spectra-
atch attention module, which collaboratively utilizes time-domain and
requency-domain signals to enhance the ability to capture multi-scale
eriodic patterns in long sequence data. As shown in (Fig. 4b), we

innovatively propose a multi-scale frequency self-attention mechanism
for frequency domain signals and a patch self-attention mechanism for
time domain signals. They are connected in series to form the SPA
module, which is introduced into the encoder and decoder. The two
modules are described in detail below.

4.7.1. Multi-scale frequency self-attention mechanism
Time domain signals are often affected by capturing long-range

dependencies. When data has strong periodicity and long-distance cor-
relation, this related information may not be correctly captured by time
series signals. To this end, we propose a multi-scale frequency self-
attention mechanism as a supplement to enhance the model’s ability
to capture long-range dependencies. Specifically, we directly feed the
omplete input sequence into the frequency attention module. First, we

use FFT to obtain the complex domain sequence. The low-frequency
art of different frequency components reflects the medium and long
eriods, while the high-frequency part contains noise and local detail

information. In view of this feature, we divide the frequency into mul-
tiple intervals from low to high. The length of each interval increases
step by step, and different weights are assigned to it. Then the attention
calculation is performed on different frequency segments separately. In
addition, considering that information loss may occur between the FFT
and iFFT processes. In order to make up for the missing information,
inspired by RestNet [59], we introduce a residual connection between
the input and output of the frequency self-attention module, as shown
in (Fig. 4b). This helps to recover the information that may be lost in
the FFT and iFFT processes during time domain reconstruction.

The specific formula definition of the module is given below. As
shown in Fig. 5, in order to obtain frequency domain features, the
nput sequence first needs to be time-frequency transformed using
iscrete Fourier transform (DFT). Given a sequence 𝑥 in the time
𝑛
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Fig. 5. Multi-scale frequency self-attention.

domain, where 𝑛 = 1, 2...𝐿. DFT is defined as 𝑥𝑓 =
∑𝑁−1

𝑛=0 𝑥𝑛𝑒−𝑖𝜔𝑙 𝑛,
where 𝑖 is the imaginary unit and 𝑥𝑓 , 𝑓 = 1, 2...𝐻 , is a sequence
of complex numbers in the frequency domain. Similarly, the inverse
Discrete Fourier transform (iDFT) is defined as 𝑥𝑛 =

∑𝐻−1
𝑓=0 𝑥𝑓 𝑒𝑖𝜔𝑙 𝑛.

To avoid (𝐿2) complexity of DFT, we use Fast Fourier transform
(FFT) and inverse transform (iFFT), whose complexity is reduced to
(𝐿 log𝐿). The complex matrix is obtained after FFT transformation.
In order to facilitate matrix calculation, we extract and stack the real
part and imaginary part respectively to obtain 𝑥𝑓 ∈ C𝐷×𝐻 × 2, where
𝐻 = 𝐿

2 + 1 represents the length of the complex sequence in the
frequency domain, and 2 in the last dimension represents the real part
and imaginary part.

As mentioned above, in order to extract the long-term periodic char-
acteristics and local detail information in sequence data, we developed
a multi-head self-attention model driven by multi-scale frequency. This
model divides the frequency signal of time series data into multiple fre-
quency bands according to the frequency. The length of each frequency
band increases with the increase of frequency, and each frequency
band is assigned a corresponding weight to highlight its importance
in sequence analysis. The formula is as follows:

FFT(𝑥𝑙−1𝑒𝑛 ) = Concat (𝐻 𝑙−1
1 , 𝐻 𝑙−1

2 …𝐻 𝑙−1
𝑚 ). (8)

where 𝐻𝑖 denotes the 𝑖th frequency interval divided from the complex
sequence.

We feed each frequency interval into a separate self-attention layer.
Then we concatenate the different interval outputs, and use iFFT to
convert the output into the time domain. The specific definition is as
follows:

At t en (𝑸 ,𝑲 ,𝑽 ) = 𝜎

(

𝑸𝑖𝑲𝑇
𝑖

√

)

𝑽 , (9)
𝑖 𝑖 𝑖 𝑖
𝑑𝑘

𝑖

9 
Fig. 6. Patch self-attention mechanism.

where 𝑸𝑖,𝑲 𝑖,𝑽 𝑖 = 𝐻 𝑙−1
𝑖 ∈ C𝐷×ℎ𝑖 × 2, 𝑖 = 1, 2 …𝑚, ℎ𝑖 is the length of

the 𝑖th intervals, and 𝜎(⋅) denotes the softmax operation. Then, the
multi-scale frequency self-attention module can be defined as:
𝑥𝑙−1𝑓 = iFFT(Conv(Concat

(At t en1,At t en2 … At t en𝑚))),
(10)

4.7.2. Patch self-attention mechanism
The Patch self-attention mechanism is designed to extract local fea-

tures in time-domain sequence data. This mechanism works by splitting
the input sequence into multiple patches. During attention calculation,
each patch is treated as an independent token. The advantage of this de-
sign is that it can simulate the concept of receptive fields in traditional
convolutional networks while allowing the model to process data in a
more fine-grained manner. In this way, the model can focus more on
capturing local detailed information, rather than paying more attention
to the global context like traditional self-attention mechanisms. This
makes up for the shortcomings of the frequency attention mechanism in
capturing local information. In addition, a key advantage of the Patch
self-attention mechanism is its ability to process individual patches
in parallel, which significantly improves computational efficiency. As
shown in Fig. 6, we first need to perform a patching operation on the
original sequence 𝑥𝑙−1𝑒𝑛 ∈ R𝐷×𝐿. Suppose the stride is 𝑆 and the length
of the patch to be split is 𝑃 . Before performing the patching operation,
we need to fill the input sequence with S numbers using end elements.
The symbols are defined as follows:

𝑥𝑙−1𝑝,1 = Pat ching(Padding(𝑥𝑙−1𝑒𝑛 )). (11)

where 𝑥𝑙−1𝑝,1 ∈ R𝐷×𝑁 ×𝑃 , and 𝑁 = ⌊

(𝐿−𝑃 )
𝑆 ⌋+ 2 is the number of patches.

Then to make the patches more representational, we map them to the
latent space via a learnable linear projection M𝑝 ∈ R𝐷×𝑃 ×𝐻 . Similar to
the transformer model, we position encode each patch through M𝑝𝑜𝑠 ∈
R𝐷×𝑁 ×𝐻 to represent the temporal order between them. The formula
is as follows:

𝑥𝑙−1𝑝,2 = M𝑝 𝑥
𝑙−1
𝑝,1 + M𝑝𝑜𝑠 . (12)

where 𝑥𝑙−1𝑝,2 ∈ R𝐷×𝑁 ×𝐻 is the sequence of patches in the hidden space.
As in Eq. (9), we compute self-attention on the patches sequence and
project it back to the dimensions of the input sequence, i.e.,

𝑥𝑙−1𝑝 = Pr oject ion(At t en(𝑸,𝑲 ,𝑽 )), (13)

where 𝑸,𝑲 ,𝑽 = 𝑥𝑙−1𝑝,2 , and 𝑥𝑙−1𝑝 ∈ R𝐷×𝑁 ×𝑃 is the output of the patch
self-attention module.

4.8. Patch cross-attention mechanism

The encoder–decoder structure requires a cross-attention mecha-
nism to calculate the similarity of the latent space states of energy
sequences. we have previously extracted the frequency signal of time
series data through the SPA module. To prevent model overfitting,
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Table 2
MSE and MAE of multivariate long-term time-series forecasting with input context length 120ℎ (i.e. 5 days) and forecasting horizon {120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}. The
est results are in bold and the second best are underlined.

Models SPAformer PatchTST [16] FEDformer [15] Autoformer [21] Informer [55] Transformer [60]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Length

120 0.283 0.342 0.290 0.334 0.307 0.370 0.346 0.397 0.644 0.546 0.444 0.446
240 0.330 0.386 0.355 0.378 0.366 0.411 0.411 0.437 0.725 0.590 0.519 0.490
360 0.370 0.407 0.409 0.409 0.410 0.438 0.436 0.458 0.769 0.624 0.512 0.489
480 0.390 0.420 0.455 0.434 0.452 0.465 0.478 0.471 0.843 0.667 0.526 0.484
600 0.411 0.438 0.493 0.451 0.487 0.487 0.503 0.491 0.806 0.636 0.554 0.521
720 0.435 0.454 0.529 0.470 0.518 0.503 0.537 0.500 0.820 0.649 0.641 0.549
840 0.440 0.459 0.555 0.485 0.525 0.506 0.575 0.530 0.830 0.660 0.653 0.549
p
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e
a
e
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we propose patch-cross attention in the time domain and no longer
onsider frequency domain signals. In this cross-attention, 𝑲 and 𝑽 ∈
𝑁 ×𝑃 come from the encoder and are obtained through 𝑁 encoder

ayers, see Eq. (5). 𝑸 ∈ R𝑀 ×𝑃 comes from the decoder, which is
btained by TFA, see Eq. (6). 𝑀 denotes the number of patches divided

by splitting with 𝑃 length. The structure of patch cross-attention is
shown in Fig. 7.

5. Experiments

5.1. Experimental settings

We conducted experiments on the energy consumption dataset of
 commercial office building, as described in Section 3.1. The input
f the model is a multivariate time series of energy consumption in 12

categories, and the output is a future prediction of energy consumption
in these categories. In addition, we conduct a comparative study on the
univariate prediction accuracy of total energy consumption.

We use the Adam optimizer where the learning rate is updated
ith the number of iterations. A large learning rate is used at the

beginning of training to quickly approach the optimum. The learning
rate is continuously reduced in the later stages of training to fine-tune
the model parameters and avoid overfitting. Batch-size that is too small
will cause the training speed to slow down, and too large will cause
he accuracy to decrease. Considering the training environment and
ractical experience, we set the batch size to 32. In the patching op-
ration, we set the patch-size to 48 (i.e. 2 days) and the step-size to 24
i.e. 1 day). Experiments show that the patch of length 48 can capture
ufficient historical information, while an overly large patch will result
n slower training. The step size of 24 is to allow some overlap of
ach newly generated sample and increase the diversity of the data.
e use the data from the whole year of 2022 as the training set, and

he data from January to July 2023 as the test set. MSE and MAE are
sed as evaluation metrics of the model to evaluate the performance of
he model from different perspectives. The experimental environment
s Pytorch on NVIDIA Quadro RTX 8000 48 GB GPUs.

5.2. Comparison study

5.2.1. Baselines
We select the latest state-of-the-art transformer-based models as our

aselines, including FEDformer [15], PatchTST [16], Autoformer [21],
Informer [55] and classic Transformer. All models follow the same
xperimental setup.

To understand how well our forecasting models perform over vary-
ing future time periods, we set up our experiments with a consistent
tarting point: we use an input length of 𝐿 = 120ℎ. This means we are

looking at data from the past 5 days (assuming each unit in 𝐿 represents
an hour, which is common in such studies) as the basis for making our
predictions. Then, we test how accurate these models are at predicting
energy use for different lengths of time into the future. Specifically, we
are interested in seeing how well they can forecast the next 120 h (5
days), 240 h (10 days), 360 h (15 days), 480 h (20 days), 600 h (25
days), 720 h (30 days), and 840 h (35 days). In other words, we are
10 
Fig. 7. Patch cross-attention mechanism.

checking the performance of our models when they are tasked with
redicting energy consumption from as short as the next 5 days to as
ong as the next 35 days, based on the past 5 days of data.

This approach lets us compare the models’ effectiveness across a
range of future time horizons, giving us a clear picture of how well
ach model can adapt and maintain accuracy over shorter and longer
orecasting periods.

We compare the performance of the models from both quantitative
and qualitative perspectives. In the quantitative analysis, we choose
MSE and MAE metrics to evaluate the performance of SPAformer and
baselines. By comparing the MSE and MAE of the model in the short-
erm (such as 5 days) and long-term (such as 35 days) prediction
eriods, we can understand the adaptability and robustness of different
odels under different prediction horizons. This provides reliable data

upport for energy management and planning. In the qualitative anal-
sis, we compare the predicted curves of each model with the actual
nergy consumption curves. This approach allowed us to visually assess
nd compare each model’s ability to capture trends and patterns in
nergy use and to provide a qualitative evaluation of each model’s
ccuracy and reliability.

5.2.2. Results of multivariate energy consumption prediction
In order to understand how our forecasting model performs for

multi-category energy consumption forecasts under different forecast-
ing horizons, we compared it with the state-of-the-art baselines with
respect to the itemized energy consumption forecasts. The results of
the experiment are shown in Table 2. Overall, our model outperforms
baseline methods. In terms of specific values, compared with the best
results that the Transformer-based model can provide, SPAformer over-
all reduces MSE by 12% and MAE by 4%. And it can be seen from the
experimental results that SPAformer still has great advantages in long-
distance sub-item energy consumption prediction tasks. In addition, it
is easy to find that the PatchTST [16] accuracy becomes worse than
FEDformer [15] as the prediction length becomes longer. This further
suggests that the periodicity of long time series is more easily captured
in the frequency domain. In contrast, short sequence predictions are
more sensitive to local dependence, which is more easily captured in
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Fig. 8. Six category prediction cases of the building energy consumption dataset under the input-120ℎ-predict-240ℎ setting: heating and cooling stations, lighting sockets, air
conditioning terminals, information centers, charging piles and corridor emergency lighting.
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the time domain. Therefore, SPAformer, which introduces the spectra-
atch attention mechanism, achieves state-of-the-art results in both
hort and long sequence prediction tasks.

In order to qualitatively compare the predictions of different mod-
els, we plot the prediction results from the test set of building energy
consumption in six important categories, including heating and cooling
tations, lighting sockets, air conditioning terminals, information cen-

ters, charging piles and corridor emergency lighting, Fig. 8. Our model
shows the best performance among different models. In particular,
PAformer is significantly better than other models in predicting the

power consumption of heating and cooling stations. Additionally, our
odel is better able to predict local details, periodicity and overall

rends.
11 
5.2.3. Results of univariate energy consumption prediction
The prediction of total building energy consumption is a univariate

time series prediction task. Compared to itemized energy consump-
ion, the total energy consumption series contains a single pattern,
hich is easier to be accurately predicted by the model. However,

omplex models may suffer from overfitting when capturing single
r simple patterns. To explore SPAformer’s ability to generalize the
rediction of total energy consumption, we compared it with the base-

lines. The results of the experiment are shown in Table 3. Overall,
SPAformer reduces the MSE by about 10% and the MAE by about 5%
compared to state-of-the-art models (PatchTST [16], FEDformer [15],
Autoformer [21]). In particular, the generalization ability of SPAformer
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Table 3
MSE and MAE of univariate long-term time series forecast of total energy consumption with input context length 120ℎ (i.e. 5 days) and forecasting horizon
120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}. The best results are in bold and the second best are underlined.

Models SPAformer PatchTST [16] FEDformer [15] Autoformer [21] Informer [55] Transformer [60]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Length

120 0.208 0.310 0.213 0.315 0.209 0.326 0.285 0.374 0.249 0.350 0.280 0.335
240 0.227 0.331 0.252 0.341 0.233 0.347 0.317 0.395 0.278 0.364 0.306 0.354
360 0.271 0.363 0.299 0.374 0.282 0.374 0.350 0.407 0.290 0.386 0.327 0.377
480 0.305 0.393 0.348 0.407 0.315 0.412 0.369 0.428 0.300 0.391 0.371 0.395
600 0.321 0.417 0.397 0.436 0.376 0.434 0.393 0.446 0.306 0.403 0.360 0.390
720 0.338 0.425 0.456 0.476 0.383 0.437 0.427 0.477 0.319 0.417 0.367 0.390
840 0.355 0.461 0.504 0.507 0.424 0.466 0.479 0.519 0.345 0.428 0.395 0.407
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is significantly better than the baselines in total energy prediction
cross long periods.

However, it is worth noting that in univariate long sequence pre-
diction, Informer [55] and Transformer [60] outperform our model in
most cases. Transformer is the original model to introduce the attention
mechanism, which employs a point-by-point mechanism to compute
the attention scores. Informer was proposed to address the high com-
plexity of Transformer. It proposed ProbSparse self-attention based on
he sparsity of the attention matrix. These two models have simpler

structures than other baselines, so they can better avoid learning irrel-
evant information and introducing more noise. Although SPAformer’s
eneralization ability in total energy consumption prediction is not

optimal, this paper focuses more on the prediction of multivariate time
series of itemized energy consumption. We believe that it is acceptable
to sacrifice part of the generalization ability of total energy consump-
tion prediction in exchange for high-precision prediction accuracy of
multi-category energy consumption.

5.3. Sensitivity analysis

Different input sequence lengths usually affect the accuracy of
nergy consumption predictions. Too short input sequences contain
ess historical information, while too long input sequences introduce
ore noise and instability. On the other hand, the patch length and

ransformer hyper-parameter settings may also affect the stability of the
model. Therefore, in this section, we conduct three aspects of sensitivity
analysis: (I) exploring the performance of each model under different
input lengths, (II) comparing the impact of different patch lengths on

odel performance and (III) hyper-parameter sensitivity.

5.3.1. Impact of input sequence length on model prediction performance
We performed sensitivity analysis on the input sequence length in

he short-term and long-term energy consumption prediction tasks re-
pectively. We set the input length 𝐿 ∈ {120, 240, 360, 480, 600, 720, 840}.

As shown in Fig. 9, in the short-term prediction, the prediction window
ength is 360ℎ. It is obvious that FEDformer [15], Autoformer [21],

and Informer [55] show an increasing trend in MSE with increas-
ing input length. This is because longer encoder inputs introduce
more noise, resulting in these baselines not benefiting from the longer
lookback window. The performance of our model is close to that of
atchTST [16] in short-term prediction, which shows that dividing time
eries into patches can capture richer local information.

In the long-term prediction task, the forecasting window is 720ℎ.
e can easily find that for most baselines, as the input length in-

reases, the MSE first decreases and then increases. Because longer
ime series contain more complex periodic patterns. PatchTST [16] has

little change in MSE as the lookback window increases. This suggests
that it takes into account local dependencies well but ignores longer
periodic patterns. In our model, the ability to capture long and short
periods is enhanced by introducing a multi-scale frequency correlation
mechanism. Compared with the baseline, our model achieves better
performance overall, although the MSE has an upward trend after the
input sequence length is greater than 600. We analyze that when the
lookback window is larger than 600, the noise and instability of the
long sequence will be further aggravated, causing interference to the

capture of the cycle.

12 
5.3.2. Effect of patch length on model stability
In order to verify the stability of the SPAformer model, we compared

he model prediction performance under different patch lengths. In the
xperiment, we fixed the lookback window to 120ℎ and changed the
atch length 𝑃 = {8, 16, 24, 32, 40, 48, 56, 64}. The stride is set to half of

the corresponding patch length so that each newly generated sample
as a certain overlap and increases the diversity of the data. The model

is trained to predict 120ℎ and 360ℎ step lengths. The experimental
esults are shown in Fig. 10. As the patch size increases, there is no

significant difference in the MSE indicator. This shows that SPAformer
is stable and robust to the patch length hyperparameter. In addition, it
can be found that the prediction performance is best when the patch
length is set to 48 on the building energy consumption dataset.

5.3.3. Hyper-parameter sensitivity
To study the sensitivity of SPAformer to the transformer parameter

settings, we experimented with different combinations of model param-
eters. We set the number of encoders 𝑁 = {1, 2, 3} and the number
f decoders 𝑀 = {1, 2, 3}. In addition, we set the model latent space
imension 𝑑𝑚𝑜𝑑 𝑒𝑙 = {128, 256} and the number of heads of the attention
echanism ℎ𝑒𝑎𝑑 = {4, 8}. There are a total of 12 different combinations

f model hyper-parameters. Fig. 11 shows the MSE scores on the 12
hyper-parameter combinations, where the input sequence is fixed to
120ℎ and the future horizon is 120ℎ and 360ℎ. It can be seen that
SPAformer is highly robust to the choice of hyper-parameters regardless
of whether the prediction horizon is 120ℎ or 360ℎ. Of course, in
the second parameter combination (𝑁 , 𝑀 , 𝑑𝑚𝑜𝑑 𝑒𝑙 , ℎ𝑒𝑎𝑑) = (1, 1, 128, 8),
he model achieves the best performance. We followed this hyper-
arameter setting in the previous experimental section.

5.4. Ablation experiment

In this subsection, we perform ablation experiments on SPAformer,
which includes three parts: (I) We compare the prediction perfor-
mance of the model using different decomposition methods and without
ecomposition. (II) Compare the impact of MLP and different self-
ttention mechanisms on the accuracy of trend prediction. (III) Com-
are the accuracy of SPA and state-of-the-art attention mechanisms
n cycle component prediction to explore the effectiveness of the SPA
odule.

5.4.1. Trend-period decomposition block
We first performed ablation experiments on the sequence decom-

osition block to understand the performance improvement it brings.
e compare the performance under five settings (I) Feeding the input

equence directly to the encoder–decoder without sequence decompo-
ition. (II) Using the moving average method for sequence decompo-
ition. (III) Using exponential smoothing method for sequence decom-
osition. (IV) Using the prediction result of the trend component as
he final output without considering the period component. (V) Using
he prediction of the period component as the final output without

considering the trend component. The experimental results are shown
Table 4. The performance of the model that introduces the sequence
in
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Fig. 9. Prediction performance (MSE) under different lookback windows. The lookback window is set to {60ℎ, 120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ} and the prediction range are

60 and 720. We select the state-of-the-art models as the baselines.
Fig. 10. MSE scores for different patch lengths 𝑃 = {8, 16, 24, 32, 40, 48, 56, 64}, where the input sequence length is 120ℎ and the prediction lengths are 120ℎ and 360ℎ.
Fig. 11. MSE scores for different hyper-parameter combinations. The combinations (𝑁 , 𝑀 , 𝑑𝑚𝑜𝑑 𝑒𝑙 , ℎ𝑒𝑎𝑑) = (1, 1, 128, 4), (1, 1, 128, 8), (1, 1, 256, 4), (1, 1, 256, 8), (2, 2, 128,
4), (2, 2, 128, 8), (2, 2, 256, 4), (2, 2, 256, 8), (3, 3, 128, 4), (3, 3, 128, 8), (3, 3, 256, 4), (3, 3, 256, 8) are labeled 1 to 12 in the figure in order. 𝑁 and 𝑀 are the number
of encoders and decoders respectively, 𝑑𝑚𝑜𝑑 𝑒𝑙 represents the latent space dimension and head is the number of attention heads. The model fixes the input length to 120, and the
future horizons are 120 and 360 respectively.
c
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decomposition block is significantly better than that of direct forecast-
ng, especially for long time series. In addition, using the prediction of

cycle or trend components as the output of the model does not lead to
ptimal performance. Because this will ignore the joint impact of both
n long sequence prediction. On the contrary, optimal performance
an be achieved by using different forecasting methods for the cycle

and trend components and aggregating the forecast results of the two
o obtain a future sequence. In order to choose a more appropriate
ecomposition method, we compare moving average and exponential
moothing. Experiments show that moving smoothing is more suitable
or our building energy consumption data.
13 
5.4.2. MLP vs self-attention in trend prediction
In this subsection, we conduct ablation experiments on the trend

omponent prediction method aiming to compare the performance of
LP and its alternatives. Three SOTA attention mechanisms are used as

omparison models. Similarly, we fix the input sequence length to 120
and the prediction length to {60ℎ, 120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ,
840ℎ}. The results are shown in Table 5. The results show that the MLP-
based trend component prediction method we adopted achieved SOAT
esults and is significantly better than other models. Unlike the periodic
omponent, although the trend component is the main part of the time

series, the pattern it contains is simpler. All attention-based models will
overfit the trend, which will produce large errors. In contrast, MLP has
an advantage in predicting such trend signals.
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Table 4
Ablation experiments for trend-periodic decomposition block: SPAformer w/o Decomp means that the model does not use serial decomposition. SPAformer-MA/SPAformer-ES
means using the moving average/exponential smoothing method for sequence decomposition. SPAformer w/o Seasonal/Trend means trend/periodic forecast only. The input
length of the model is fixed at 120, and the output length is {60ℎ, 120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}.

Models Sequence decomposition block Output length

Moving average Exponential smoothing 120 240 360 480 600 720 840

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SPAformer w/o Decomp 0.290 0.334 0.350 0.375 0.405 0.408 0.448 0.432 0.489 0.452 0.539 0.471 0.556 0.489

SPAformer-MA ✓ 0.283 0.342 0.330 0.380 0.370 0.407 0.390 0.420 0.411 0.438 0.435 0.454 0.440 0.459
SPAformer-ES ✓ 0.322 0.374 0.362 0.401 0.406 0.430 0.435 0.448 0.457 0.462 0.473 0.478 0.504 0.493

SPAformer w/o Seasonal ✓ 0.305 0.359 0.364 0.403 0.409 0.433 0.438 0.452 0.459 0.464 0.476 0.474 0.488 0.483
SPAformer w/o Trend ✓ 0.458 0.478 0.473 0.488 0.483 0.491 0.487 0.491 0.493 0.496 0.499 0.492 0.502 0.496
Table 5
Ablation experiments of trend prediction: Comparison of MLP and three SOTA attention mechanisms on trend component prediction. SPAformer-MLP-SPA uses MLP to
predict the trend component. SPAformer-PatchAtt-SPA/SPAformer-AutoCorr-SPA/SPAformer-ProbAtt-SPA uses patch attention/auto-correlation/prob attention mechanism
to predict trend components. SPA is applied equally to periodic to component predictions. The input length of the models is fixed at 120, and the output length is
{60ℎ, 120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}.

Models Trend Output length

MLP PatchAtt AutoCorr ProbAtt 120 240 360 480 600 720 840

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SPAformer-MLP-SPA ✓ 0.283 0.342 0.330 0.380 0.370 0.407 0.390 0.420 0.411 0.438 0.435 0.454 0.440 0.459
SPAformer-PatchAtt-SPA ✓ 0.405 0.451 0.462 0.481 0.520 0.508 0.508 0.511 0.540 0.524 0.525 0.509 0.541 0.512
SPAformer-AutoCorr-SPA ✓ 0.338 0.398 0.483 0.503 0.560 0.554 0.600 0.577 0.614 0.588 0.605 0.580 0.594 0.577
SPAformer-ProbAtt-SPA ✓ 0.406 0.451 0.502 0.518 0.589 0.567 0.628 0.589 0.633 0.593 0.628 0.587 0.629 0.587
Table 6
Ablation experiment of periodic prediction: forecasting results with input length 𝐼 = 120ℎ and predicted length 𝑂 ∈ {120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}. Three variants of

DFformer are compared to the baseline. The best and second best results are highlighted in bold and underlined respectively.
Models Transformer [60] Informer [55] Autoformer [21] SPAformer SPAformer V1 SPAformer V2 SPAformer V3

Self-att FullAtt ProbAtt AutoCorr SPA ProbAtt ProbAtt SPA
Cross-att FullAtt ProbAtt AutoCorr PatchAtt PatchAtt PatchAtt AutoCorr

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Length

120 0.444 0.446 0.644 0.546 0.346 0.397 0.283 0.340 0.325 0.368 0.331 0.372 0.296 0.355
240 0.519 0.490 0.725 0.590 0.411 0.437 0.327 0.374 0.348 0.390 0.369 0.409 0.349 0.395
360 0.512 0.489 0.769 0.624 0.436 0.458 0.371 0.406 0.393 0.421 0.414 0.435 0.392 0.422
480 0.526 0.484 0.843 0.667 0.478 0.471 0.390 0.420 0.446 0.456 0.449 0.452 0.412 0.439
600 0.554 0.521 0.806 0.636 0.503 0.491 0.411 0.435 0.491 0.481 0.456 0.453 0.434 0.453
720 0.641 0.549 0.820 0.649 0.537 0.500 0.423 0.444 0.527 0.503 0.497 0.481 0.440 0.455
840 0.653 0.549 0.830 0.660 0.575 0.530 0.440 0.448 0.553 0.524 0.525 0.493 0.460 0.466
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5.4.3. SPA vs SOTA attention mechanisms in period prediction
We propose to use an encoder–decoder structure for prediction of

periodic components. The SPA module is introduced into the encoder
to improve the capture ability of long and short period patterns, and
the patch cross-attention is introduced into the decoder to improve
the similarity score between the input and predicted sequences. In
order to compare the performance of the method and its alternatives,
we performed ablation experiments on different attention mechanisms.
Three ablation variants of SPAformer were tested: (I) SPAformer V1:
we use ProbSparse self-attention [55] to replace the SPA module in
he encoder. (II) SPAformer V2: we use ProbSparse self-attention and
ross-attention to replace SPA and patch cross-attention respectively.
III) SPAformer V3: we use Auto-Correlation [21] to replace the patch
ross-attention mechanism in the decoder. The results are shown in

Table 6. Our proposed method achieves SOTA results. And we find
that the model and its variants that introduce the SPA module in the
encoder are significantly better than the other models. For the cross-
attention mechanism in the decoder, the performance of the V3 variant
using Auto-Correlation is closer to our model. However, limited by the
high complexity due to Time Delay Aggregation, the training of the V3
variant consumes more memory and takes longer.

5.5. Input and future sequence distribution experiments and analysis

In Section 5.2, we verify the effectiveness of SPAformer using
MSE and MAE metrics. However, it may be incomplete to use only
14 
these metrics to demonstrate that our model outperforms the baselines.
Therefore, in this section, we will consider using statistical significance
to further compare the prediction accuracy of SPAformer with the base-
lines. We first introduce the Kolmogorov–Smirnov (KS) test method,
and then conduct a comparative analysis based on the experimental
results.

5.5.1. Kolmogorov–Smirnov test
The Kolmogorov–Smirnov (KS) test is a nonparametric statistical

ethod used to evaluate the similarity between two probability dis-
ributions. This test does not require the data to follow a normal
istribution. It is mainly used to evaluate the difference in the distribu-
ion form of two samples [61]. Essentially, the test answers the question

: what is the probability that these two sets of samples come from
the same (but unknown) probability distribution [15]. It quantifies
the distance between the empirical distribution functions of the two
samples. Unlike other tests of central tendency and dispersion, the KS
est focuses on determining the difference in the overall shape of the
istribution. The Kolmogorov–Smirnov statistic is:

𝐷𝑛,𝑚 = sup
𝑥

|

|

𝐹1,𝑛(𝑥) − 𝐹2,𝑚(𝑥)|| (14)

where 𝐹1,𝑛 and 𝐹2,𝑚 are the empirical distribution functions of the first
and the second sample respectively, and 𝑠𝑢𝑝 is the supremum function.
For large samples, the null hypothesis is rejected at level 𝛼 if:

𝐷 >
√

−1 ln
(𝛼 )

⋅

√

𝑛 + 𝑚 (15)
𝑛,𝑚 2 2 𝑛 ⋅ 𝑚
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Table 7
Kolmogorov–Smirnov test P-values for long-term time series forecast output on the building energy consumption datasets. All models have a unified input context length of 120ℎ
(i.e. 5 days) and a forecast horizon of {120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}. The best results are in bold.

Models SPAformer PatchTST [16] FEDformer [15] Autoformer [21] Informer [55] Transformer [60] True

Length

120 0.332 0.338 0.288 0.238 0.121 0.158 0.304
240 0.339 0.278 0.272 0.211 0.022 0.127 0.314
360 0.349 0.249 0.233 0.158 0.007 0.119 0.307
480 0.334 0.193 0.225 0.149 0.018 0.101 0.298
600 0.325 0.184 0.131 0.134 0.004 0.123 0.292
720 0.345 0.179 0.090 0.139 0.005 0.126 0.294
840 0.347 0.166 0.095 0.109 0.001 0.135 0.301
Table 8
Complexity analysis of different models. 𝐿 is the length of the input sequence and 𝑁 is the number of patches.

Models SPAformer PatchTST [16] FEDformer [15] Autoformer [21] Informer [55] Transformer [60]

Time (𝐿 log𝐿) (𝑁2) (𝐿) (𝐿 log𝐿) (𝐿 log𝐿) (𝐿2)
Memory (𝐿 log𝐿) (𝑁2) (𝐿) (𝐿 log𝐿) (𝐿 log𝐿) (𝐿2)
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where 𝑛 and 𝑚 are the sizes of the first and second samples respectively.

5.5.2. P-values test results
This section uses the KS test to quantitatively evaluate the distri-

bution similarity between the input and output sequences of different
models. The null hypothesis is that the two samples come from the same
distribution. The larger the 𝑃 -value in the KS test, the less likely the null
hypothesis is to be rejected, that is, the greater the probability that the
input and predicted sequences come from the same distribution. We
pply the KS test to the building energy consumption datasets, where
he input sequence length is fixed to 120ℎ and the output sequence is
∈ {120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}.
The experimental results are shown in Table 7. The experiment sets

the confidence level 𝑃 -value to 0.01. Obviously, the SPAformer model
significantly outperforms the baselines, especially for long-distance
time series prediction. Furthermore, SPAformer achieved a larger 𝑃 -
value than the real output sequence, indicating better model perfor-

ance rather than just more accurate predictions. It should be noted
hat the 𝑃 -value of the Informer model is much lower than 0.01, which
ndicates that its predicted sequence is more likely to come from a
ifferent distribution than the input sequence.

6. Complexity analysis

The vanilla transformer has (𝐿2) time complexity and memory
usage due to the point-wise connection in self-attention [60]. Trans-
former variants reduce the theoretical complexity from (𝐿2) to (𝐿)
by introducing coefficient bias or exploring low-rank approximations
of the self-attention matrix. However, it is not clear whether the actual
inference time and memory cost on the device are improved. To fully
evaluate the complexity of SPAformer, we first perform a theoretical
analysis of the complexity. Then, we statistically analyze the actual
time and memory efficiency of SPAformer and the baselines on the
device.

6.1. Theoretical complexity analysis

The theoretical time and memory complexity of SPAformer and
aselines are shown in Table 8. Informer [55] extends transformer
ttention with ProbSparse based on KL divergence, achieving (𝐿 log𝐿)

complexity, which selects dominant queries based on queries and key
similarities. Autoformer [21] introduces an auto-correlation mecha-
nism to replace self-attention, which discovers subsequence similarities
ased on sequence period and aggregates similar subsequences from
he underlying period. This sequence mechanism achieves (𝐿 log𝐿)

complexity for series of length 𝐿 and breaks the information utilization
bottleneck by extending the point-wise representation aggregation to
 t

15 
the subsequence level. FEDformer [15] applies attention operations in
the frequency domain using Fourier transform and wavelet transform.
It achieves linear complexity by randomly selecting a fixed-size subset
of frequencies. PatchTST [16] reduces the complexity to (𝑁2) by
applying patches, which reduces 𝐿 by a stride factor, where 𝑁 ≈ 𝐿

𝑃 .
Similar to PatchTST, assuming the input sequence length is 𝐿,

SPAformer first performs a patch partitioning operation in the time-
domain attention module. This operation reduces the complexity from
(𝐿2) to (𝑁2), where 𝑁 is much smaller than 𝐿. In the multi-
cale frequency attention module, we first transform the time-domain
equence to the frequency-domain signal by fast Fourier transform
FFT), with a complexity of (𝐿 log𝐿). Then, we divide the frequency-
omain signal into low, medium and high frequencies, and use pattern
ndexing to reduce the complexity to 𝑂(𝐻), where 𝐻 = 𝐿

2 + 1. We
erform convolution operations in different frequency intervals 𝑖 (see

Fig. 5), with a complexity of 𝑂(𝐻𝑖 ⋅𝐾2), where 𝐾 can be regarded as a
constant as the size of the convolution kernel. The attention calculation
complexity is 𝑂(𝐻2

𝑖 ), where 𝐻𝑖 is much smaller than 𝐻 . In summary,
he overall time and memory complexity of SPAformer is (𝐿 log𝐿).

6.2. Actual time and memory efficiency

The previous chapter mentioned that the transformer variant the-
retically reduces the complexity from (𝐿2) to (𝐿 log𝐿) or even
(𝐿). This seems like a significant improvement, but in practice, this

heoretical improvement does not always translate into real efficiency
ains. In order to fully understand the actual memory complexity
nd time complexity of SPAformer during training and inference, we
onducted experiments on an NVIDIA GeForce RTX 3090 24 GB GPU
evice. We fix the input sequence length to 120ℎ, the output sequence
ength 𝑂 = {120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ} and set the batch
ize to 32.

The experimental results are shown in Fig. 12. We compare the
emory consumption of SPAformer with the baselines in (Fig. 12a). It

is obvious that our model significantly outperforms other models, and
the memory complexity does not increase significantly as the prediction
ength increases. In addition, our model adopts encoder–decoder archi-

tecture and direct prediction method. In contrast, PatchTST only uses
the encoder for prediction, which loses some important information. It
is worth noting that SPAformer has reached a level close to PatchTST
in terms of memory complexity. In terms of time complexity, we com-
ared the average training time of each epoch, as shown in (Fig. 12b).

SPAformer outperforms all baselines when prediction length exceeds
360ℎ. After three trainings, our model converges after 60 iterations
on average, while the average iterations of other baselines are 50.
SPAformer takes about 15 s per epoch on average, and the total training

ime is about 900 s. In addition, due to the patch operation, the
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Fig. 12. Efficiency analysis. We fix the input sequence length to 120 and the prediction length to 𝑂 = {120ℎ, 240ℎ, 360ℎ, 480ℎ, 600ℎ, 720ℎ, 840ℎ}. (a) Memory usage comparison
etween SPAformer and the baselines. (b) Average training time per epoch. (c) Average inference time per batch of samples.
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Table 9
Statistics of popular public datasets for benchmark.

Datasets Weather Electricity ETTh1 ETTh2 ETTm1 ETTm2

Features 21 321 7 7 7 7
Timesteps 52 696 26 304 17 420 17 420 17 420 17 420

complexity of our model is not easily affected by the prediction length.
Similarly, SPAformer also achieved state-of-the-art results in average
inference time per batch of samples, as shown in (Fig. 12c). Overall,
lthough it is not theoretically optimal for the complexity (𝐿 log𝐿) of

the SPAformer model, in practical applications, our model is state-of-
the-art in terms of time efficiency and memory usage, which is crucial
or long-distance time series forecasting tasks.

7. Experiments on public datasets

To further verify the generalization ability of SPAformer, we evalu-
ted the model on 6 popular benchmark datasets, including electricity,
eather, and ETT datasets [55]. In this section, we first introduced

he basic information of the selected public datasets, including data
sources, data scale, and characteristics. Then, we described the exper-
imental settings and evaluation indicators in detail. By comparing the
key indicators of the model on different datasets, the generalization
ability of the model was comprehensively evaluated.

7.1. Public datasets

The following are six public datasets: (1) Four ETT datasets: ETT is
 key indicator in the long-term deployment of electricity. This dataset
ontains the transformer load and oil temperature in two different
ounties in China from July 2016 to July 2018. The dataset is divided
nto hourly datasets (ETTh1, ETTh2) with a timestamp of 1 h and
inute-level datasets (ETTm1, ETTm2) with a timestamp of 15 min. (2)
he Electricity dataset contains hourly electricity consumption of 321
ustomers from 2012 to 2014. (3) The Weather dataset is data recorded
very hour throughout 2020, which contains 21 meteorological indi-
ators, such as temperature, humidity, wind speed, rainfall, etc. The
tatistical data of the above datasets are shown in Table 9.

7.2. Experimental settings

We follow the standards of the baselines and divide all datasets into
raining, validation, and test sets in chronological order. Among them,

the ETT and Electricity datasets are divided into 12/4/4 months. The
eather dataset is divided into 6/3/3 months. For better comparison,

all models follow the same experimental settings [21], where the input
length 𝑰 is fixed to 96, the prediction length is 𝑻 ∈ {96, 192, 336, 720},
and the Adam optimizer with an initial learning rate of 10−4 is used.
The batch size is set to 32. In the patch operation of SPAformer, we
fixed the patch-size and step-size to 16 and 8 respectively, referring
to the parameter settings of PatchTST. MSE and MAE are used as the
 S
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evaluation indicators of all models. All experiments are repeated 3
times, implemented in PyTorch, and performed on a single NVIDIA

eForce RTX 3090 24 GB GPU.

7.3. Comparison study

7.3.1. Baselines
Similar to Section 5.2, We select the latest state-of-the-art

transformer-based models as our baselines, including FEDformer [15],
PatchTST [16], Autoformer [21], Informer [55] and classic Trans-
former. All models follow the same experimental setup.

7.3.2. Results of multivariate time series forecasting
We conducted extensive experiments to verify the generalization

ability of the SPAformer model for multivariate time series forecasting.
The comparative experimental results are shown in Table 10. Overall,
SPAformer reduces the MSE indicator by about 5% and the MAE indi-
ator by about 4%. For the four ETT datasets and the Weather dataset,
e can find that the prediction accuracy of SPAformer is significantly

mproved with the increase of the prediction length 𝑂. This means that
PAformer has good generalization ability and robustness for long-term
rediction, which is meaningful for practical applications in the real
orld, such as weather forecasting and long-term energy consumption
lanning.

It should be noted that the prediction results of our model on
he Electricity dataset are slightly inferior to those of FEDformer. As

mentioned in Section 7.1, the dimension of the Electricity series data is
21. We believe that the method of multi-step sequence decomposition

and then mapping to the latent space adopted by FEDformer may be
ore effective in capturing the relationship between variables. But this
ill increase the complexity to a certain extent. In contrast, SPAformer

s more suitable for ultra-long-term prediction of strongly periodic time
series data. We believe that a small decrease in accuracy is acceptable
in exchange for predicting longer sequences.

8. Discussion

8.1. Stability analysis of the model

Stability is one of the important characteristics of the model, which
an ensure that the model can provide reliable and consistent per-
ormance when facing different data and environmental conditions.
n this section, we will explore the stability of SPAformer from three
spects: (I) computational efficiency, (II) prediction performance and
III) generalization ability.

8.1.1. Stability of computational efficiency
As mentioned in Section 6.2, in order to fully understand the actual

memory complexity of SPAformer and the time complexity of training
nd inference, we conducted experiments on an NVIDIA GeForce RTX
090 24 GB GPU device. We compared the memory consumption of
PAformer with the baselines, as shown in (Fig. 12a). SPAformer
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Table 10
Multivariate long-range time series forecasting results for 6 public benchmark datasets with input context length 𝐼 = 96 and forecast horizons 𝑂 ∈ {96, 192, 336, 720}. The best
results are in bold, and the second best are underlined.

Datasets SPAformer PatchTST [16] FEDformer [15] Autoformer [21] Informer [55] Transformer [60]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.383 0.400 0.394 0.408 0.376 0.419 0.449 0.459 0.941 0.769 1.035 0.820
192 0.436 0.425 0.446 0.438 0.423 0.448 0.500 0.482 1.007 0.792 1.152 0.864
336 0.452 0.433 0.485 0.455 0.459 0.465 0.521 0.496 1.107 0.809 1.161 0.890
720 0.465 0.451 0.495 0.474 0.506 0.507 0.515 0.517 1.181 0.865 1.250 0.925

ETTh2

96 0.280 0.343 0.294 0.342 0.346 0.388 0.358 0.397 3.755 1.525 2.212 1.221
192 0.353 0.380 0.378 0.394 0.429 0.446 0.456 0.452 5.602 1.931 5.354 1.945
336 0.360 0.392 0.382 0.410 0.496 0.487 0.482 0.486 4.721 1.835 4.076 1.413
720 0.382 0.410 0.412 0.433 0.463 0.474 0.515 0.511 3.647 1.625 2.982 1.453

ETTm1

96 0.330 0.348 0.324 0.361 0.379 0.419 0.510 0.492 0.672 0.571 0.522 0.508
192 0.368 0.375 0.362 0.383 0.426 0.441 0.553 0.496 0.795 0.669 0.748 0.648
336 0.385 0.395 0.390 0.402 0.445 0.459 0.621 0.537 1.212 0.871 0.991 0.780
720 0.430 0.428 0.461 0.438 0.543 0.490 0.671 0.561 1.166 0.845 1.099 0.819

ETTm2

96 0.179 0.251 0.177 0.260 0.203 0.287 0.255 0.339 0.365 0.462 0.426 0.493
192 0.240 0.286 0.248 0.306 0.269 0.328 0.281 0.340 0.533 0.586 0.869 0.685
336 0.282 0.334 0.304 0.342 0.325 0.366 0.339 0.379 1.363 0.887 1.213 0.838
720 0.371 0.388 0.403 0.397 0.421 0.415 0.422 0.419 3.379 1.338 2.971 1.245

Electricity

96 0.165 0.235 0.180 0.264 0.186 0.302 0.196 0.313 0.304 0.393 0.533 0.489
192 0.181 0.261 0.188 0.275 0.197 0.311 0.211 0.324 0.327 0.417 0.547 0.498
336 0.211 0.301 0.206 0.291 0.213 0.328 0.214 0.327 0.333 0.422 0.570 0.499
720 0.261 0.332 0.247 0.328 0.233 0.344 0.236 0.342 0.351 0.427 0.625 0.510

Weather

96 0.180 0.220 0.177 0.218 0.238 0.314 0.249 0.329 0.300 0.384 0.612 0.493
192 0.232 0.240 0.224 0.258 0.275 0.329 0.325 0.370 0.598 0.544 0.724 0.638
336 0.246 0.280 0.277 0.297 0.339 0.377 0.351 0.391 0.702 0.620 0.956 0.713
720 0.330 0.332 0.350 0.345 0.389 0.409 0.415 0.426 1.059 0.731 1.437 0.858
M
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significantly outperforms other models, and the memory consumption
is relatively stable as the prediction length increases. Unlike baselines
such as FEDformer and Autoformer, which require more encoder–
decoder layers, SPAformer only needs 1 to 2 encoder and decoder
ayers to achieve optimal prediction performance, as described in Sec-

tion 5.3.3. This contributes to the stability of memory consumption
during model training, which is helpful for longer time series predic-
tion. In Section 6.2, we also compared the actual time complexity of
the model. SPAformer’s average training time per epoch exceeds all
baselines. On the other hand, our model also achieves state-of-the-art
results in average inference time per batch of samples, which is mainly
due to the reduced complexity of the patch operation we introduced.

8.1.2. Stability of prediction performance
In Section 5.3, we conducted three aspects of sensitivity analysis:

(I) the performance of the model under different input lengths, (II) the
impact of different patch lengths on model performance and (III) The
impact of transformer hyper-parameter settings on model prediction
stability. In the short-term (360ℎ) energy consumption prediction
task, our model performance is close to PatchTST and exceeds all
other models. This shows that dividing the time series into patches
can capture richer local information. In the long-distance (720ℎ)
prediction task, most baselines first decrease and then increase the MSE
as the input length increases. They are unable to capture more complex
periodic patterns from longer time series. In contrast, SPAformer shows
stable prediction performance, which benefits from the multi-scale fre-
quency attention mechanism and enhances the ability to capture long
periods. Patch operation, as a key module of SPAformer, is studied for
the impact of different lengths on model stability. The experimental
results are shown in Fig. 10. There is no significant difference in the
MSE score as the patch size increases. This shows that SPAformer has
good stability and robustness to the patch length hyper-parameter.
On the other hand, in the hyper-parameter sensitivity analysis in
Section 5.3.3, we set 12 hyper-parameter combinations for the number
of encoder and decoder layers, latent space dimensions, and the number
of attention mechanism heads. When the prediction field of view is 120
and 360, SPAformer shows robustness to the hyper-parameter selection.
 r
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8.1.3. Generalization ability of the model
To verify the generalization ability of the SPAformer model, we

evaluate the performance of the model in multivariate time series
forecasting tasks on 6 popular benchmark datasets in Section 7.3.
Overall, SPAformer reduces the MSE indicator by about 5% and the

AE indicator by about 4%. As the prediction length 𝑂 increases,
he prediction accuracy of SPAformer is significantly better than the
aselines. This means that SPAformer has good generalization ability

and robustness for long-term predictions, which is meaningful for
practical applications in the real world, such as weather forecasting and
long-term energy consumption planning.

8.2. Limitations of the model

While we are deeply discussing the advantages and application
otential of the SPAformer model, we also need to face up to some
imitations in the design and application of SPAformer. In this section,
e will discuss three aspects: (I) The model may face the risk of
verfitting, (II) The model may be more suitable for processing time

series data with strong periodicity and (III) The model currently does
not support online real-time training.

8.2.1. Overfitting problem
As the networks of Transformer variants become more complex,

hey often suffer from model overfitting. Our model will inevitably face
his problem. As described in Section 5.2.3, SPAformer achieved state-

of-the-art results in short-term prediction of univariate prediction of
total building energy consumption. However, as the prediction length
increases, Informer, which has a simpler structure, outperforms all
models. The reason is that the complex encoder–decoder architecture
used in these models leads to training overfitting. On the other hand,
too many network layers can also lead to model overfitting. In Sec-
tion 5.3.3, we compared the impact of different numbers of encoders
and decoders on the MSE score of SPAformer. As shown in Fig. 11, in
the experiment with an output length of 360, the MSE increases slightly
when the number of encoders and decoders increases from 1 to 3. We
believe that overfitting may have occurred when the number of layers
s greater than or equal to 3. In order to minimize overfitting, we fixed
he number of encoders and decoders of SPAformer to 1, and adopted
egularization and early stopping techniques.
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8.2.2. Suitable for strongly periodic time series data
In the field of large commercial office buildings, building energy

onsumption often shows obvious periodicity, including short periods
f days and weeks and long periods of quarters and years. SPAformer is
roposed to address the strong periodicity of building energy consump-
ion. The experimental results in Section 5.2.2 show that the model is

significantly better than other models in capturing periodicity. This is
due to the introduction of the period-trend decomposition block and
he SPA module. At the same time, the encoder–decoder structure is
sed in the prediction of the periodic component, which uses a more
omplex network model to unravel the multiple periodic patterns of
uilding energy consumption at multi-scale resolutions. However, our
odel may not be suitable for weak-periodic multivariate time series

orecasting tasks.

8.2.3. Incremental data cannot be trained in real time
In the field of building energy management, real-time energy con-

sumption prediction and automated decision-making are essential for
mproving energy efficiency, reducing costs, and achieving sustainable
evelopment. However, SPAformer currently lacks the ability of real-
ime prediction and online real-time training, which limits its ability

to perform effective energy consumption management and automated
decision-making in a dynamically changing environment. Due to the
inability to train online in real time, the model may need to be updated
offline regularly, which is not only time-consuming, but may also lead
to a decrease in the model’s predictive ability during the update period.
In order to overcome these limitations, it may be necessary to develop
new algorithms, improve the model’s learning ability, and optimize the
data processing and prediction mechanism.

8.3. Application scenarios of SPAformer

Energy consumption forecasting is an important part of the energy
management system, which aims to provide daily management of
ower utilities, grid planning, and make the best decisions in grid en-
rgy management to ensure the safe operation of the power system [62,

63]. The SPAformer prediction model we designed achieves high-
recision and long-distance predictions. This helps decision makers
ormulate and implement energy-saving policies, reduce building en-
rgy consumption, and achieve sustainable development. For example,
uilding energy management systems often uniformly manage indoor
emperatures by setting constant temperatures. However, the actual
utdoor temperature will continue to change over time, so dynamically
djusting the set temperature is crucial for energy saving. Our model
chieves high-resolution and accurate prediction of multi-category en-
rgy consumption of buildings, which can assist building managers to
et temperature thresholds more reasonably and continuously adjust
nergy supply strategies.

Of course, model deployment is also a challenge. Currently,
SPAformer is only a non-online prediction model, which cannot train
incremental data in real time. This limits its ability to effectively
manage energy consumption and make automated decisions in a dy-
namically changing environment. In the next stage of work, we plan
to jointly deploy SPAformer with AI Agents to optimize the operation
strategy and automate the control of the building heating, ventila-
ion and air conditioning system (HVAC). Specifically, we first use
PAformer to predict the future HVAC power consumption based on
istorical energy consumption. Then feed the prediction results and the
eal-time parameters collected by the HVAC sensors into the pre-trained
arge language model (LLM). Based on the power system parameter
djustment strategy given by the LLM, the administrator manually or
he system automatically adjusts the parameters. Based on the above
echnical route, we can develop API interfaces through the open source
ramework of AI Agents (such as AutoGen, LangChain, etc.), which

as the ability to integrate multiple tools, including predictive models,
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large language models, optimization algorithm libraries, and simula-
ion. We believe that SPAforemer’s high-precision prediction and LLM’s
atural language processing capabilities can help dispatchers quickly
earn dispatching knowledge, improve dispatching efficiency and accu-
acy, and thus achieve economic, safe and low-carbon operation of the
ower system.

9. Conclusions and future work

This paper studies the problem of long-term series forecasting in
he field of building energy consumption, which is important for im-
roving energy efficiency. Complex long and short cycles and trend
atterns in energy consumption data prevent models from learning
ffective dependencies. In this paper, we propose a multi-scale Spectra-
atch Attention mechanism for multivariate long-term series forecast-
ng of building energy consumption. Specifically, we propose to use
he MLP and the attention mechanism to model trend and periodicity,
espectively, after the decomposition of the periodic trend. In periodic
odeling, we propose an attention mechanism that fuses multi-scale

requency domain and patch time-domain signals. The frequency atten-
ion in this mechanism focuses on modeling periodicity, while the patch
emporal attention focuses on modeling local dependencies. In addition,
e conducted a multi-dimensional comparison with five other deep

earning models based on real energy consumption data of the typical
large commercial office building in Beijing, China. SPAformer achieves
state-of-the-art performance on long-term energy consumption series
forecasting benchmarks. Moreover, comparative experimental results
on 6 public benchmark datasets also verify that the model has a strong
generalization ability.

The model proposed in this study has obvious advantages in pre-
dicting strongly periodic time series data, especially building energy
onsumption data. In addition, our model also provides a reference
or the improvement of attention mechanisms based on time-frequency
usion. However, our study only considered different categories of
uilding energy consumption data and did not consider the impact of
xternal factors on energy consumption. Energy consumption can be
ffected by various factors, such as environmental factors (temperature,
umidity, etc.), human factors (personnel activities, etc.), equipment
actors (set temperatures and valve openings of the VAV system, etc.),
patial factors (glazing orientation, floor space, building materials, etc.)
nd the relevance of the building complex, etc. Therefore, we can
urther research from the following aspects in the future: (I) Propose
 more complex and effective time-frequency fusion attention mech-
nism. (II) Explore the correlation between different external factors
nd building energy consumption to further improve the accuracy and
eneralization ability of the model. (III) Explore possible correlations
etween different buildings based on federated learning.
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Appendix. Terminology list

1. MTS: multivariate time-series
2. RNN: recurrent neural network
3. LSTM: long short-term memory network
4. MLP: multilayer perceptron
5. CNN: convolutional neural networks
6. ARIMA: autoregressive integrated moving average
7. VARMA: vector autoregressive moving average
8. SVR: support vector regression
9. VAR: vector autoregressive

10. GNN: graph neural networks
11. STGNN: spatio-temporal graph neural network
12. EMD: empirical mode decomposition
13. DWT: wavelet transform
14. SPA: spectra-patch attention
15. GESD: generalized extremization deviation
16. DFT: discrete Fourier transform
17. FFT: Fast Fourier transform
18. MSE: Mean Squared Error
19. MAE: Mean Absolute Error
20. KS: Kolmogorov–Smirnov
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