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Abstract. Grain size measurement from high-resolution metallographic microscope images
is a fundamental task in materials science, as microstructural grain characteristics critically
determine material properties. Traditional manual methods are labor-intensive and prone
to human bias, while existing automatic approaches often su�er from segmentation noise,
artifacts, and incomplete boundaries, limiting their e�ectiveness in large-scale screening ap-
plications. To overcome these limitations, we propose a novel, automated framework that
integrates deep learning and computational geometry techniques for accurate and e�cient
grain size measurement. Our approach employs a U-Net model for initial grain boundary
segmentation, followed by a specially designed skeleton-based cleaning process that removes
noise and spurious branches while preserving genuine boundaries. This re�ned boundary rep-
resentation enables precise grain size computation using the intercept method in accordance
with ASTM E112 standards. Experimental evaluations on diverse, real-world metallographic
datasets demonstrate that our method achieves a mean absolute error of 0.034 in grain size
measurement and reduces processing time from 99 seconds (manual) to approximately 5
seconds per image. These results underscore the potential of our integrated approach as
a robust and scalable solution for advancing metallographic analysis in both research and
industrial applications.
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1 INTRODUCTION

Metallography is the analysis of microscopic images of materials to characterize their internal features, such as
grains, phases, and inclusions. It is essential in materials science because these microstructural characteristics
strongly in�uence properties such as strength, toughness, and corrosion resistance. Accurate metallographic
analysis plays a critical role in optimizing the performance and reliability of metal materials, especially in safety-
critical and high-performance applications across industries such as automotive manufacturing, aerospace,
small arms safety, and structural engineering. Among various metallographic assessments, grain size measure-
ment is particularly important, since the average grain size often governs key performance attributes of the
material [6, 21]. Despite its signi�cance, grain size measurement remains predominantly manual [1], making
it time-consuming and susceptible to human bias.

Automated image processing methods have become an essential tool in microstructure analysis within
materials science [3, 14, 15]. These techniques enable the quantitative characterization of features such as
grain boundaries, phases, and inclusions by employing standard methods such as thresholding, morphological
�ltering, and watershed segmentation. Such approaches reduce the reliance on manual analysis while providing
detailed microstructural information.

In the context of grain size measurement, these techniques have proven particularly e�ective. For example,
Peregrina-Barreto et al. applied a combination of image enhancement and segmentation techniques to auto-
matically delineate grains and boundaries, noting that factors such as noise and low contrast can compromise
image quality and segmentation accuracy [18]. Similarly, Paredes-Orta et al. developed a watershed-plus-
marker method based on an improved ultimate opening function, which accurately detects grain markers even
in poor quality images [17]. Banerjee et al. introduced a sequential processing pipeline that extracts closed
grain contours from optical micrographs, yielding grain size distributions comparable to those obtained via
conventional methods [2]. In addition, Flipon et al. demonstrated that image analysis of both optical and
scanning electron micrographs can accurately determine grain size distributions while signi�cantly reducing
processing times compared to traditional electron backscattered di�raction techniques [7]. Furthermore, Li et
al. proposed an algorithm that automates the intercept method for grain size measurement by applying a topo-
logical skeleton approach to extract continuous and closed grain boundaries, thereby accurately determining
the average grain size in accordance with international standards [13]. Although these rule-based algorithms
perform well when grain boundaries are sharply de�ned, they frequently encounter di�culties when applied to
complex microstructures or images with variable quality, thereby limiting their generalizability across di�erent
materials and imaging conditions [12, 13].

Machine learning and deep learning techniques have emerged as powerful tools in microstructure analysis,
enabling robust and adaptable grain size measurement across diverse material types and imaging conditions.
These data-driven approaches excel when high-quality training data is available, as they can learn complex
features and generalize well to varying imaging scenarios. However, their performance can be a�ected by
suboptimal training data or tuning parameters.

In particular, Gajalakshmi et al. developed an algorithm based on support vector regression that utilizes
features extracted from edge-detected images to count grains and accurately determine grain size [8]. Similarly,
Li et al. implemented a multi-task learning framework combined with a generative adversarial network to
concurrently detect grain boundaries and segment second phase particles, achieving high accuracy in both
tasks [11]. Choudhary et al. integrated traditional machine learning with deep learning models to classify
microstructural regions in sintered NdFeB magnets from Kerr microscopy images, with results compared against
electron backscatter di�raction data [5]. Furthermore, Gorynski et al. introduced a region-based convolutional
neural network approach to quantify microstructural characteristics, yielding consistent and statistically precise
grain size measurements [9]. While these approaches are highly adaptable, they may introduce recognition
errors or overlook certain boundaries when the training data or tuning parameters are suboptimal, and they
may also encounter challenges related to insu�cient data [19].
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To address these shortcomings, we propose a novel approach that combines deep learning-based segmen-
tation with specially designed post-processing steps using computational geometry concepts. In particular, our
method incorporates advanced topological skeleton analysis to enhance the overall quality of the grain bound-
ary representations. This integration improves the continuity and clarity of the boundaries by mitigating noise
and discontinuities typically associated with the segmentation process. Validated on real-world metallographic
datasets, our approach is e�cient, scalable, and demonstrates robust performance across diverse microstruc-
tures and preparation conditions. This performance bridges traditional metallography with computer-aided
design (CAD) techniques, enabling automatic and reliable grain size measurement, and advancing metallo-
graphic analysis.

2 MATERIALS

In this research, a total of 400 metallographic images were acquired for model training and validation. Among
these, 300 images exhibit sharply de�ned grain boundaries and were prepared under optimal conditions, in-
cluding cutting, grinding, polishing, and etching, to ensure clarity of microstructural features. These 300
images are evenly divided between high-purity iron (150 images) and stainless steel (150 images), providing
a balanced representation of materials with distinct microstructural characteristics. Additionally, 100 images
of high-purity iron prepared under assorted conditions were incorporated to enhance the generalization ability
of our algorithm and mitigate over�tting to ideal imaging scenarios. This diverse dataset enables our inte-
grated algorithm to learn robust microstructural features across varying preparation conditions and material
types, thereby reinforcing the accuracy and generalizability of both the deep learning segmentation and the
computational geometry-based post-processing stages.

(a) (b) (c)

Figure 1: Representative metallographic images of three specimen categories: (a) high-purity iron prepared un-
der optimal conditions, (b) stainless steel prepared under optimal conditions, and (c) high-purity iron prepared
under assorted conditions. Images obtained under optimal conditions exhibit sharply de�ned grain boundaries
compared to those prepared under assorted conditions.

Figure 1 illustrates representative examples of the three categories of metallographic images used in this
study, highlighting the visual di�erences between specimens prepared under optimal and assorted conditions.
Table 1 summarizes the key details of the specimen materials and the associated metallographic prepara-
tion protocols, including the procedures for cutting, grinding, polishing, etching, and microscopy. Together,
these representations provide essential context for our experimental framework and support the comprehensive
evaluation of our algorithm's performance across a broad spectrum of microstructural features.
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High-purity Iron (Optimal) Stainless Steel (Optimal) High-purity Iron (Assorted)

Image Count 150 150 100

Microstructure Ferrite (grain) Austenite (grain) Ferrite (grain)

Cutting Metallographic cutting machine Assorted

Grinding 1000-grit sandpaper Assorted

Polishing Polishing cloth Assorted

Etching Nital
1g KMnO4

+10ml H2SO4

+90ml H2O
Assorted

Microscopy
Leica DMi8C microscope

Magni�cation: 100x or 200x
Image size: 5472 × 3648 pixels

Table 1: Summary of specimen materials and corresponding metallographic preparation protocols

3 ALGORITHM DETAILS

Our proposed approach for automatic grain size measurement comprises three key stages: grain boundary
extraction, grain boundary cleaning, and grain size computation using the intercept method. Figure 2 illustrates
the overall structure of our approach and provides representative examples of the intermediate results obtained
at each stage.

1. Grain Boundary Extraction: In the initial stage, we train and deploy a U-Net model to segment grain
areas and grain boundary regions from input metallographic images. While U-Net e�ectively identi�es the
majority of grain boundaries, it may also detect some grain boundary artifacts and feature imperfections
due to segmentation inaccuracies and the inherent complexities of material structures.

2. Grain Boundary Cleaning: The second stage involves re�ning the extracted grain boundaries through
a topological skeleton-based cleaning process. Utilizing computational geometry concepts, we analyze
the main boundary topologies and iteratively remove minor, dangling branches while retaining larger
or more complete branches that correspond to genuine grain boundaries. This process minimizes the
impact of artifacts and imperfections, ensuring a more accurate representation of the grain structure.

3. Grain Size Computation: Finally, we apply the intercept method, a standardized technique for grain
size measurement, to quantify grain sizes based on the cleaned grain boundaries. The intercept method
involves overlaying test patterns on the metallographic images and calculating grain size by counting the
intersections of these patterns with the grain boundaries. Our approach mitigates the intercept method's
sensitivity to small noisy areas and its insensitivity to broken grain boundary ends by integrating the
previous stages, thereby enhancing the overall accuracy and reliability of grain size measurements.

Figure 3 presents a �owchart summarizing our proposed algorithm. Further details on the implementation
of each stage are provided in the remainder of this section.

3.1 Grain Boundary Extraction

We utilize the U-Net architecture [20] to segment grain boundaries from metallographic images. U-Net is a
well-established model for semantic segmentation and is suitable for high-resolution microscopy data, enabling
a clear distinction between grain boundary regions and grain areas.
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(a) (b)

(c) (d)

Figure 2: Overview of the proposed approach for automatic grain size measurement. The representative
image example shows the key stages involved: (a) input metallographic image, (b) grain boundary extraction
using the U-Net model, (c) grain boundary cleaning using a topological skeleton-based process, and (d) �nal
grain size calculation via the intercept method

U-Net
Input

(Microscope Image)
Morphological Opening Skeletonization

Short, Dangling 
Branch Pruning

Pruning 
Occurred

Intercept 
Method

Output
(Calculated Grain 

Size Number)

Update IsDangling & Lavg

No

Yes

(Pruning criteria：IsDangling & L<Lavg)

Stage 3: Grain Size 
Computation

Stage 1: Grain Boundary 
Extraction

Stage 2: Grain Boundary Cleaning

Figure 3: Flowchart summarizing our proposed algorithm
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A dataset of 400 real-world metallographic images was collected and labeled (as discussed in Section 2),
encompassing materials such as high-purity iron and stainless steels produced and imaged under diverse con-
ditions. Each image was systematically partitioned into 512× 512 patches with a stride of 128, a process that
both expands the dataset and mitigates computational demands during training. These patches were then
split into training (60%), validation (20%), and testing (20%) sets. Additionally, the same testing subset was
manually annotated for grain size measurement using the intercept method, thus enabling an overall evaluation
of our complete approach.

Traditional U-Net, as originally proposed, requires input images of size 572 × 572 and produces outputs
of size 388 × 388 [20], which necessitates cropping during the skip connections to align the feature maps.
This discrepancy arises from the use of the valid padding strategy in convolution operations, where the output
size decreases by two pixels after each convolution. In contrast, the same padding strategy preserves the
input dimensions by zero-padding the image borders appropriately. In our implementation, we adjust both
the input and output sizes to 512 × 512, thereby eliminating the need for cropping and preserving spatial
resolution throughout the network. This modi�cation facilitates direct concatenation in the skip connections
and enhances the e�ective use of multi-scale features for precise grain boundary segmentation. The U-Net
architecture used in our implementation is depicted in Figure 4.
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Figure 4: Our variant of the U-Net architecture for grain boundary extraction

To mitigate the risk of over�tting, several regularization strategies were integrated into our training process.
Speci�cally, dropout layers with a rate of 0.3 were inserted after each convolutional block in the encoder path of
the U-Net architecture, and L2 weight regularization with a coe�cient of 1×10−4 was applied to the network
parameters. Furthermore, data augmentation was performed using horizontal �ipping, vertical �ipping, 90◦

rotations in both clockwise and counterclockwise directions, and contrast enhancement. We also conducted
10-fold cross validation on the training set to ensure robust hyperparameter tuning and reliable performance
evaluation.

Although U-Net successfully identi�es the majority of grain boundaries, certain challenges remain. Noise
introduced during metallographic preparation and incomplete etching can cause some impurities to be misclas-
si�ed as boundaries, while partially corroded boundaries may be misclassi�ed as grains. Consequently, actual
boundaries may appear as dangling branches that are not fully connected, and other noise-like features may
be erroneously labeled as valid boundaries. These artifacts can undermine the accuracy of subsequent grain

Computer-Aided Design & Applications, 23(4), 2026, 451-461
© 2026 U-turn Press, LLC, http://www.cad-journal.net

http://www.cad-journal.net


457

size measurements. Therefore, in the next step, we re�ne and correct the initially segmented boundaries to
address these limitations.

3.2 Grain Boundary Cleaning

After the U-Net segmentation, we re�ne the identi�ed grain boundaries by extracting their topological skeleton
and removing incorrect segments. The skeleton representation simpli�es the overall topology, enabling the
di�erentiation of true grain boundaries from undesired artifacts such as segmentation noise and falsely detected
structures within the microstructure.

In the topological skeleton, valid grain boundaries are represented by long, continuous edges. Both fully
connected boundaries and discontinuous yet valid boundaries tend to manifest as longer branches that should
be preserved, whereas short, dangling branches are more likely to represent noise or minor artifacts and are
targeted for removal.

In our grain boundary cleaning process, we �rst employ a morphological opening operation to eliminate
isolated noise and smooth the U-Net segmentation output. Following this, we construct the topological
skeleton using the algorithm proposed by Lee et al. [10]. We then compute the average length of the skeleton
edges and set a threshold at 50% of this average length to distinguish between long and short dangling
branches. Branches shorter than this threshold are pruned from the skeleton. Since pruning may generate new
short dangling branches, we iteratively update the skeleton, recalculate the average branch length, and repeat
the pruning process until no additional short branches remain. This systematic and iterative approach ensures
that the �nal skeleton accurately represents the true grain boundaries.

For a concise overview, the detailed �owchart for this stage is provided in Figure 3. Additionally, Algorithm 1
presents the pseudocode for the cleaning procedure.

Algorithm 1 Skeleton-Based Grain Boundary Cleaning

1: procedure SkeletonCleaning(Iseg)
2: Iopen ←MorphologicalOpening(Iseg)
3: S ← Skeleton(Iopen)
4: Lavg ← AverageBranchLength(S)
5: T ← 0.5× Lavg ▷ Threshold set to 50% of average branch length
6: pruningOccurred ← true
7: while pruningOccurred do
8: pruningOccurred ← false
9: for each branch b ∈ S do

10: if IsDangling(b) and Length(b) < T then
11: S ← RemoveBranch(S, b)
12: pruningOccurred ← true
13: end if
14: end for
15: if pruningOccurred then
16: Lavg ← AverageBranchLength(S)
17: T ← 0.5× Lavg

18: end if
19: end while
20: return S
21: end procedure
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3.3 Grain Size Computation

Following grain boundary extraction and cleaning, the resulting skeleton captures continuous boundaries and
retains any long, dangling branches that correspond to actual grain edges. This step is critical for the intercept
method prescribed by ASTM E112 [1], which is relatively insensitive to small breaks in boundaries but highly
sensitive to noise and artifacts. By removing short, spurious branches and preserving longer, valid edges, our
approach ensures that subsequent grain size measurements accurately re�ect the true microstructure.

The intercept method draws test patterns (e.g., lines or circles) over the metallographic image and counts
the intersections between these patterns and the identi�ed grain boundaries. From these counts, the o�cial
ASTM grain size number G is computed using the following formula [1]:

G = −3.288 − 6.643856 × log10

( L

M ×N

)
, (1)

where L is the total length of the test patterns in millimeters, M is the magni�cation factor of the microscope,
and N is the number of intersections counted. By aligning with a widely recognized standard, this method
enables our �nal grain size measurements to be directly compared across di�erent laboratories and material
systems.

4 RESULTS AND DISCUSSION

4.1 U-Net Segmentation

We evaluated the segmentation performance of our U-Net model on a test dataset of 80 real-world metallo-
graphic images (as discussed in Section 2 and 3.1) at a resolution of 5472 × 3648. For comparison, we also
assessed two other well-known segmentation methods, namely Fully Convolutional Networks (FCN) [16] and
DeepLab V3+ [4], using precision, recall, and Intersection over Union (IoU) as evaluation metrics. Table 2
summarizes the performance of these models on our dataset.

Model Precision Recall IoU

FCN 87.5% 89.2% 78.9%

DeepLab V3+ 89.8% 92.3% 82.5%

U-Net 95.4% 92.5% 86.5%

Table 2: Segmentation performance of FCN, DeepLab V3+, and U-Net on the test dataset

The results indicate that U-Net outperforms both FCN and DeepLab V3+ in terms of precision, recall,
and IoU. U-Net's superior performance can be attributed to its encoder-decoder architecture with skip con-
nections, which e�ectively combines high-level semantic information with low-level spatial details, an essential
characteristic for accurately delineating the intricate grain boundaries in metallographic images.

Notably, U-Net exhibits slightly higher precision than recall, which indicates that its identi�ed grain bound-
aries are highly reliable with few false positives, even though a small fraction of true boundaries may be missed.
In grain size measurement, false positives, often arising from impurities or segmentation noise, can signi�cantly
distort the accuracy of the measurements. Therefore, minimizing false positives is crucial, and U-Net's perfor-
mance in this regard is particularly bene�cial. By ensuring that most detected boundaries are indeed genuine,
U-Net provides a more robust foundation for subsequent grain size analysis.

Overall, these �ndings underscore the suitability of U-Net for our application, particularly in scenarios
demanding high-�delity segmentation of complex metallographic features.
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4.2 Overall Performance

We invited three professional metallurgists, each with more than 20 years of experience in manual grain size
measurement, to determine the grain size numbers for 80 test images using the intercept method with the same
intercept test patterns employed by our algorithm. Ground truth was established only when all three experts
reached unanimous agreement. Table 3 compares our integrated method (U-Net + Skeleton + Intercept)
with other automatic approaches, including U-Net + Intercept and U-Net + Skeleton + Planimetric, as well
as with manual measurements.

Approach Mean Absolute Error Implementation Time (s)

Manual (Ground Truth) 0 99.17

U-Net + Intercept 0.219 2.81

U-Net + Skeleton + Planimetric 0.148 4.90

U-Net + Skeleton + Intercept (Ours) 0.034 5.04

Table 3: Comparison of di�erent grain size measurement approaches

The results indicate that our integrated method achieves the lowest mean absolute error (0.034 in ASTM
grain size number) while processing each image in approximately 5 seconds, compared to roughly 99 seconds
for manual measurement. Although the U-Net + Intercept approach is faster, its accuracy is signi�cantly
lower (mean absolute error of 0.219). These �ndings suggest that incorporating the skeleton-based cleaning
process substantially improves segmentation quality, which in turn enhances the accuracy of grain size mea-
surements. Overall, our approach not only reduces the time and e�ort required for manual analysis but also
outperforms other automated methods in terms of both accuracy and robustness, making it well-suited for
practical metallographic analysis.

4.3 Limitations and Future Work

Although our method demonstrates robust performance across a dataset of 400 metallographic images, it
currently relies on training the deep learning model from scratch. In many materials science studies, acquiring
a similarly large dataset can be cost-prohibitive and time-consuming, given the complex procedures involved
in specimen preparation and imaging. Consequently, smaller research groups or specialized studies may �nd it
challenging to compile su�cient high-quality images for e�ective model training.

A potential direction for future work would be to develop a pre-trained version of our U-Net model using the
diverse dataset collected in this study. This model could then be �ne-tuned with a relatively small set of new
metallographic images from a di�erent material system or microstructure, using transfer learning techniques to
maintain high segmentation accuracy. Such an approach would substantially lower the barrier to entry for labs
with limited data, allowing them to bene�t from our boundary cleaning and grain size computation stages.
Ultimately, this would make automated grain size measurement more broadly accessible while preserving the
robustness and e�ciency of our integrated method.

5 CONCLUSIONS

In this paper, we presented a novel approach for metallographic grain size measurement that integrates deep
learning and computational geometry techniques. By employing the U-Net model for initial segmentation
and a skeleton-based cleaning procedure to re�ne grain boundaries, our method e�ectively addresses common
issues such as noise, incomplete etching, and branching artifacts. The subsequent application of the intercept
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method, which follows the ASTM E112 standard, ensures that the �nal grain size measurements are both
accurate and comparable across di�erent laboratories.

Experimental evaluations on real-world metallographic datasets show that our approach achieves state-
of-the-art accuracy among automatic grain size measurement methods, with a mean absolute error of 0.034
in grain size number. Additionally, it signi�cantly improves e�ciency by reducing the processing time to
approximately 5 s per image, compared to 99 s for manual measurement. By retaining critical boundary
information and eliminating noise, our integrated system provides a reliable, fast, and easily adaptable solution
for a range of material systems and imaging conditions, making it a valuable tool for advancing metallographic
analysis in both research and industrial settings.

ACKNOWLEDGEMENTS

The authors acknowledge the Powley Fund for supporting this work.

ORCID

Xiang Li, http://orcid.org/0000-0001-5936-8457

Yiming Yuan, http://orcid.org/0009-0008-2872-7320

Ling Chen, http://orcid.org/0009-0004-1086-8222

Shuai Guan, http://orcid.org/0000-0002-7300-4921

Shuai Feng, http://orcid.org/0009-0005-4545-0392

Sara McMains, http://orcid.org/0000-0002-7152-9409

REFERENCES

[1] ASTM E112-13(2021) Standard test methods for determining average grain size. Standard, ASTM
International, 2021. https://www.astm.org/e0112-13r21.html.

[2] Banerjee, S.; Chakraborti, P.C.; Saha, S.K.: An automated methodology for grain segmentation and
grain size measurement from optical micrographs. Measurement, 140, 142�150, 2019. http://doi.

org/10.1016/j.measurement.2019.03.046.

[3] Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W.: New methods for automatic quanti�cation
of microstructural features using digital image processing. Materials & Design, 141, 395�406, 2018.
http://doi.org/10.1016/j.matdes.2017.12.049.

[4] Chen, L.C.; Zhu, Y.; Papandreou, G.; Schro�, F.; Adam, H.: Encoder-decoder with atrous separable
convolution for semantic image segmentation. In Proceedings of the European Conference on Computer
Vision (ECCV), 801�818, 2018.

[5] Choudhary, A.K.; Jansche, A.; Grubesa, T.; Trier, F.; Goll, D.; Bernthaler, T.; Schneider, G.: Grain size
analysis in permanent magnets from kerr microscopy images using machine learning techniques. Materials
Characterization, 186, 111790, 2022. http://doi.org/10.1016/j.matchar.2022.111790.

[6] Figueiredo, R.B.; Kawasaki, M.; Langdon, T.G.: The role of grain size in achieving excellent properties
in structural materials. Journal of Materials Research and Technology, 30, 3448�3462, 2024. http:

//doi.org/10.1016/j.jmrt.2024.04.059.

[7] Flipon, B.; Grand, V.; Murgas, B.; Gaillac, A.; Nicola¸, A.; Bozzolo, N.; Bernacki, M.: Grain size
characterization in metallic alloys using di�erent microscopy and post-processing techniques. Materials
Characterization, 174, 110977, 2021. http://doi.org/10.1016/j.matchar.2021.110977.

[8] Gajalakshmi, K.; Palanivel, S.; Nalini, N.; Saravanan, S.; Raghukandan, K.: Grain size measurement in
optical microstructure using support vector regression. Optik, 138, 320�327, 2017. http://doi.org/

10.1016/j.ijleo.2017.03.052.

Computer-Aided Design & Applications, 23(4), 2026, 451-461
© 2026 U-turn Press, LLC, http://www.cad-journal.net

http://orcid.org/0000-0001-5936-8457
http://orcid.org/0009-0008-2872-7320
http://orcid.org/0009-0004-1086-8222
http://orcid.org/0000-0002-7300-4921
http://orcid.org/0009-0005-4545-0392
http://orcid.org/0000-0002-7152-9409
https://www.astm.org/e0112-13r21.html
http://doi.org/10.1016/j.measurement.2019.03.046
http://doi.org/10.1016/j.measurement.2019.03.046
http://doi.org/10.1016/j.matdes.2017.12.049
http://doi.org/10.1016/j.matchar.2022.111790
http://doi.org/10.1016/j.jmrt.2024.04.059
http://doi.org/10.1016/j.jmrt.2024.04.059
http://doi.org/10.1016/j.matchar.2021.110977
http://doi.org/10.1016/j.ijleo.2017.03.052
http://doi.org/10.1016/j.ijleo.2017.03.052
http://www.cad-journal.net


461

[9] Gorynski, C.; Frei, M.; Kruis, F.E.; Winterer, M.: Machine learning based quantitative characterization
of microstructures. Acta Materialia, 256, 119106, 2023. http://doi.org/10.1016/j.actamat.2023.
119106.

[10] Lee, T.C.; Kashyap, R.L.; Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning
algorithms. CVGIP: Graphical Models and Image Processing, 56(6), 462�478, 1994. http://doi.org/
10.1006/cgip.1994.1042.

[11] Li, M.; Chen, D.; Liu, S.; Liu, F.: Grain boundary detection and second phase segmentation based
on multi-task learning and generative adversarial network. Measurement, 162, 107857, 2020. http:

//doi.org/10.1016/j.measurement.2020.107857.

[12] Li, X.: Scalable geometric processing techniques with applications in characterizing additively manufac-
tured composites. Doctoral dissertation, University of California, Berkeley, 2021.

[13] Li, X.; Cui, L.; Li, J.; Chen, Y.; Han, W.; Shonkwiler, S.; McMains, S.: Automation of intercept method
for grain size measurement: A topological skeleton approach. Materials & Design, 224, 111358, 2022.
http://doi.org/10.1016/j.matdes.2022.111358.

[14] Li, X.; Cui, L.; Shonkwiler, S.; McMains, S.: Automatic characterization of spherical metal powders by
microscope image analysis: a parallel computing approach. Journal of Iron and Steel Research Interna-
tional, 30(11), 2293�2300, 2023. http://doi.org/10.1007/s42243-022-00907-z.

[15] Li, X.; Shonkwiler, S.; McMains, S.: Detection of resin-rich areas for statistical analysis of �ber-reinforced
polymer composites. Composites Part B: Engineering, 225, 109252, 2021. http://doi.org/10.1016/
j.compositesb.2021.109252.

[16] Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431�3440, 2015.

[17] Paredes-Orta, C.A.; Mendiola-Santibañez, J.D.; Manriquez-Guerrero, F.; Terol-Villalobos, I.R.: Method
for grain size determination in carbon steels based on the ultimate opening. Measurement, 133, 193�207,
2019. http://doi.org/10.1016/j.measurement.2018.09.068.

[18] Peregrina-Barreto, H.; Terol-Villalobos, I.; Rangel-Magdaleno, J.; Herrera-Navarro, A.; Morales-
Hernández, L.; Manríquez-Guerrero, F.: Automatic grain size determination in microstructures using
image processing. Measurement, 46(1), 249�258, 2013. http://doi.org/10.1016/j.measurement.

2012.06.012.

[19] Rathod, K.; Choudhary, A.K.; Jansche, A.; Ketzer-Raichle, G.; Bernthaler, T.; Schneider, G.: GeGra:
Approaching a generic model for quantitative grain size analysis from materials microscopy data using
deep learning. Materials Characterization, 217, 114379, 2024. http://doi.org/10.1016/j.matchar.
2024.114379.

[20] Ronneberger, O.; Fischer, P.; Brox, T.: U-net: Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted Intervention�MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, 234�241. Springer, 2015.
http://doi.org/10.1007/978-3-319-24574-4_28.

[21] Sarkar, A.; Prasad, M.; Murty, S.N.: E�ect of initial grain size on hot deformation behaviour of Cu-Cr-
Zr-Ti alloy. Materials Characterization, 160, 110112, 2020. http://doi.org/10.1016/j.matchar.

2019.110112.

Computer-Aided Design & Applications, 23(4), 2026, 451-461
© 2026 U-turn Press, LLC, http://www.cad-journal.net

http://doi.org/10.1016/j.actamat.2023.119106
http://doi.org/10.1016/j.actamat.2023.119106
http://doi.org/10.1006/cgip.1994.1042
http://doi.org/10.1006/cgip.1994.1042
http://doi.org/10.1016/j.measurement.2020.107857
http://doi.org/10.1016/j.measurement.2020.107857
http://doi.org/10.1016/j.matdes.2022.111358
http://doi.org/10.1007/s42243-022-00907-z
http://doi.org/10.1016/j.compositesb.2021.109252
http://doi.org/10.1016/j.compositesb.2021.109252
http://doi.org/10.1016/j.measurement.2018.09.068
http://doi.org/10.1016/j.measurement.2012.06.012
http://doi.org/10.1016/j.measurement.2012.06.012
http://doi.org/10.1016/j.matchar.2024.114379
http://doi.org/10.1016/j.matchar.2024.114379
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1016/j.matchar.2019.110112
http://doi.org/10.1016/j.matchar.2019.110112
http://www.cad-journal.net

	INTRODUCTION
	MATERIALS
	ALGORITHM DETAILS
	Grain Boundary Extraction
	Grain Boundary Cleaning
	Grain Size Computation

	RESULTS AND DISCUSSION
	U-Net Segmentation
	Overall Performance
	Limitations and Future Work

	CONCLUSIONS

