
Computers & Graphics 82 (2019) 332–342

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on SMI 2019

Edge topology construction of Voronoi diagrams of spheres in

non-general position

Xiang Li a , Adarsh Krishnamurthy

b , Iddo Hanniel c , Sara McMains a , ∗

a University of California, Berkeley, CA 94720, USA
b Iowa State University, Ames, IA 50011, USA
c Technion, Israel Institute of Technology, Haifa 320 0 0, Israel

a r t i c l e i n f o

Article history:

Received 19 March 2019

Revised 17 June 2019

Accepted 18 June 2019

Available online 26 June 2019

Keywords:

Voronoi diagram

Spheres

GPU

a b s t r a c t

Although 3D Voronoi diagrams and medial axis transforms have numerous applications in biology,

robotics, and manufacturing, most researchers use Voronoi diagrams of points instead of the true 3D in-

put geometry, due to issues of robustness and scalability. In this paper, we present a robust sample-based

GPU algorithm for calculating the full topology of Voronoi diagrams of non-general position spheres. Prior

work demonstrated that the presence, geometry, and combinatorial basis of spheres that contribute to

Voronoi vertices can be efficiently computed by shooting rays from each input sphere, mapping ray in-

tersections with the nearest bisector surface to parametric bounding cubes, and analyzing the results. In

this paper, we propose an algorithm on this parametric bounding cube to compute Voronoi edges in ad-

dition to the vertices. We successfully extract the full topology of the Voronoi diagram, including special

cases such as isolated Voronoi edges that do not contain Voronoi vertices, more than three Voronoi edges

emanating from a Voronoi vertex, and Voronoi edges that are shared by more than three Voronoi cells.

Our GPU implementation efficiently and robustly handles all input, whether in general or non-general

position, and finds all Voronoi vertices and edges, modulo the sampling density, including isolated dis-

connected edges.

© 2019 Elsevier Ltd. All rights reserved.

g

3

[

[

d

t

e

a

a

d

e

a

s

p

t

n

b
1. Introduction and prior work

A Voronoi diagram is a structure that divides space into regions

such that points within each region are closer to a specific input

object than to any other input objects. The Voronoi diagram and its

variation, the medial axis transformation, are a fundamental topic

in computational geometry, with a variety of applications in sci-

ence and engineering.

A special category of Voronoi diagram is the three-dimensional

Voronoi diagram for spheres, which is also called the additively

weighted Voronoi diagram, or Apollonius diagram. Because the

shape of many real-world objects can be naturally represented by

spheres, Voronoi diagram for spheres are widely used in many dis-

ciplines such as molecular biology, material science, and physical

simulations [1,2] .

Many important properties of Voronoi diagram for 3D spheres

have been studied [3–5] . The most successful approach to con-

struct the Voronoi diagram for 3D spheres is the edge tracing al-

gorithm proposed by Kim et al. [6] . Based on this algorithm, Kim’s
∗ Corresponding author.

E-mail address: mcmains@berkeley.edu (S. McMains).

t

V

V

e

https://doi.org/10.1016/j.cag.2019.06.007

0097-8493/© 2019 Elsevier Ltd. All rights reserved.
roup analytically constructs the Euclidean Voronoi diagram of

D spheres [6] , defines its dual structure as a Quasi-triangulation

7,8] and applies the two structures to biomolecular structures

9,10] . A similar algorithm by Medvedev et al. [11] is proposed by

eveloping a geometric structure called the Voronoi S-network.

Kim et al.’s edge tracing approach first calculates a Voronoi ver-

ex, finds its corresponding Voronoi edges, and traces the Voronoi

dges to discover other vertices, until all the vertices and edges

re found. This algorithm is efficient and relatively robust with an

ssumption of input spheres in general position; it can not han-

le disconnected Voronoi edges or high-order Voronoi vertices or

dges. These can occur when (1) at least five input spheres sharing

 Voronoi vertex; (2) the center of at least four spheres lie on the

ame plane; or (3) at least five spheres are tangent to the same

lane.

Manak and Kolingerova [12] introduced a variation on this edge

racing approach. The idea is to arrange all the Voronoi compo-

ents into a hierarchy [7] , and discover disconnected components

y exploring the information in the hierarchy. This method extends

he applicability of the edge tracing algorithm to find disconnected

oronoi components, but still limited to Voronoi diagrams with no

oronoi vertices shared by more than four cells and no Voronoi

dge shared by more than three cells.

https://doi.org/10.1016/j.cag.2019.06.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.06.007&domain=pdf
mailto:mcmains@berkeley.edu
https://doi.org/10.1016/j.cag.2019.06.007

X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342 333

l

s

c

l

i

b

s

t

c

o

l

s

e

e

t

a

i

i

b

d

p

l

a

d

c

V

V

t

C

t

c

2

o

D

V

s

(

c

d

D

s

a

t

Fig. 1. Example results showing correctly identified Track changes is on 8 Voronoi

edge topology for challenging special cases (all figures are 2D rendering of 3D

scenes): (a) A self-connected ring-shaped Voronoi edge is identified (the centers

of these three input spheres lie on the same line); (b) Four infinite Voronoi edges

(both ends extending to infinity) are identified for this case where the centers of

the five input spheres lie on the same plane; (c) An infinite Voronoi edge (with

both ends extending to infinity) is identified for this case where the centers of six

input spheres lie on the same plane. The Voronoi edge passes through the center of

the ring of six spheres and is perpendicular to their plane. Symbol “
⊙

” represents

Voronoi edge shooting outwards to infinity (coming towards the reader); symbol

“
⊗

” represents Voronoi edge shooting inwards to infinity (away from the reader).

(

s

s

o

o

t

t

t

s

V

f

t

V

t

t

3

Recently, in Hu et al. [13] we proposed an algorithm to calcu-

ate the geometry information of Voronoi vertices and Voronoi face

ample points. The algorithm is a sample-based approach that cal-

ulates sample points on Voronoi faces by taking the lower enve-

ope of the intersections of rays from each base sphere through

ts corresponding bisectors. It was able to find Voronoi vertices of

oth general and non-general position (degenerate-case) inputs by

earching for patterns of neighboring sample points that indicate

he presence of Voronoi vertices and using numerical iteration to

alculate the vertex locations. Unlike just sampling the input ge-

metry, this approach to sampling supports finding actual vertex

ocations and edge topology. These can be used in molecular analy-

is to calculate the quasi-triangulation [7] , and then calculate prop-

rties such as densities and volumes of the proteins [9] . As another

xample application, we need Voronoi vertex and edge information

o serve as nodes and paths to run a path-finding algorithm such

s A

∗ to find an efficient collision-free path.

Constructing Voronoi diagrams by computing lower envelopes

s a widespread idea in both R

2 and R

3 for different classes of

nput objects [14–16] . Also, the mathematical representation of

isectors has been studied for different shapes. Hanniel et al.

iscussed the bisectors and even trisectors among a set of CSG

rimitives [17] . In Hu et al. we combined the ideas of ray tracing,

ower envelope, bisector representation, and numerical iteration,

nd exploited the parallelism of this approach with an algorithm

esigned for strengths of the GPU. However, that algorithm only

alculates the geometry information of Voronoi vertices; the

oronoi edge topology information is not calculated.

In this paper, we present a follow-on algorithm to calculate

oronoi edges under both general or non-general input posi-

ions (including disconnected Voronoi edges and degenerate cases).

ombining our output with the prior geometry output, we build

he full Voronoi diagram for 3D spheres with inputs under any

ondition. Our main contributions include:

• GPU framework designed to exploit data parallelism for effi-

cient calculations.
• A robust algorithm to construct the Voronoi edge topology in-

formation for both general and non-general position input, in-

cluding:

(a) Self-connected Voronoi edges, as in Fig. 1 (a);

(b) Infinite Voronoi edges with both ends extending to infin-

ity, as in Fig. 1 (b);

(c) High order Voronoi vertices or Voronoi edges with non-

general position input, as in the example in Fig. 1 (c)

where the centers of the six equal-sized spheres lie on

a hexagon in the same plane.

. Terminology and definitions

Following Hanniel and Elber [17] , the Voronoi diagram for a set

f spheres in 3-dimensional space is defined as:

efinition 1. Given a set of spheres S 0 , S 1 , . . . , S n in R

3 , the

oronoi cell (VC) of sphere S i , denoted the “base sphere,” is the

et of all points closer to S i than to S j , ∀ j � = i . The Voronoi diagram

VD) is then the union of the Voronoi cells of all (n+1) spheres.

The distance between a point P = (x, y, z) and a sphere S with

enter (C x , C y , C z) and radius R is defined by the equation:

ist(P, S) =

√

(x − C x) 2 + (y − C y) 2 + (z − C z) 2 − R. (1)

efinition 2. The union of all points that are equidistant from

pheres S i and S j is called the bisector B i , j of the two spheres. S i , S j
re called the generating spheres of the bisector B i , j .

Any point P = (x, y, z) located on the bisector surface between

wo spheres S 1 (center (C x , C y , C z) and radius R 1) and S 2 (center

1 1 1
 C x 2 , C y 2 , C z 2) and radius R 2) satisfies the following equation:

√

(x − C x 1)
2 + (y − C y 1)

2 + (z − C z 1)
2 − R 1

=

√

(x − C x 2)
2 + (y − C y 2)

2 + (z − C z 2)
2 − R 2 . (2)

The bisector is a plane for two generating spheres with the

ame radii; for two generating spheres with different radii the bi-

ector is a hyperbolic surface [13,18] . A Voronoi face is the subset

f a bisector that is closer to its generating spheres than to any

ther spheres.

Within a Voronoi cell, Voronoi edges are the intersection be-

ween two of its Voronoi faces. In general, Voronoi vertices are

he intersection among three Voronoi faces; such a vertex is de-

ermined by the four spheres to which it is equidistant (the base

phere and three other spheres corresponding to each of the

oronoi faces).

A base sphere is a generating sphere of a Voronoi

ace/edge/vertex if such a Voronoi face/edge/vertex appears in

he Voronoi cell corresponding to the base sphere. Typically, a

oronoi face/edge/vertex has 2/3/4 generating spheres, respec-

ively. If there are more generating spheres than this general case,

hey are said to be not in “general position.”

. Prior algorithm to calculate Voronoi vertices

We briefly summarize our prior algorithm [13] as follows:

1. Determine the implicit quadratic surface equations, derived

from Eq. (2) , for the bisectors between the base sphere and

all the other input spheres (input spheres can intersect but

not completely contain another sphere).

2. From each base sphere, the algorithm creates an axis-aligned

bounding cube, and uniformly subdivides each of the six

faces to a parameterized domain expressed in variables u

and v (Fig. 2). From the center of the base sphere, the algo-

rithm shoots sampling rays through each (u, v) sample point

on the bounding-box surface into space.

3. Compute the intersection of each base sphere ray with all

the corresponding bisectors, and take the lower envelope of

all the intersections (i.e. only keep the nearest intersection

334 X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342

Fig. 2. Mapping sphere to six u-v parametric surfaces on the bounding cube; uni-

form parametric sampling of top surface shown [13] .

Fig. 4. Construction of the new tiny grid-cell [13] .

4

p

t

s

p

g

t

i

s

4

c

fi

i

t

n

r

f

i

t

e

s

d

e

t

g
for each ray) to obtain the sample points on the Voronoi

faces of the Voronoi cell for this base sphere.

4. The algorithm color-codes each sample point of the Voronoi

cell for the base sphere on the u-v parametric domain based

on its corresponding bisector found in step 3. It uses a

marching approach to locate the neighborhood of Voronoi

vertices by checking each group of four neighboring sample

points on the bounding cube, called a “grid-cell.” Each 3-

color and 4-color grid-cell indicates the appearance of three

or more Voronoi faces in this neighborhood. Recall that

Voronoi vertices are the intersection among three Voronoi

faces in general, so 3-color and 4-color grid-cells indicate

the existence of Voronoi vertices.

Fig. 3 shows the correspondence between sample points in

geometric space and the u-v parametric domain.

5. For each 3-color grid-cell, take the average of the location in

3D space of the face sample points as the starting point for

iteration, then use the Newton-Raphson method to find the

actual vertex location (within a user-defined tolerance) that

satisfies the three corresponding implicit bisector equations.

If the sampling density is insufficient, special cases of sin-

gular Jacobian and 4-color grid-cells would occur, indicat-

ing that Voronoi vertices cannot be calculated in those grid-

cells. The algorithm uniformly subdivides such grid-cells into

four new sub-grid-cells, repeating steps 1–5 for the newly

generated u-v points. New sub-cells shoot additional sam-

ple rays to the 3D space neighborhood corresponding to the

original grid-cell, increasing the local sampling density to

provide more information to calculate the Voronoi vertices.

6. The algorithm combines the results of the Voronoi cell cal-

culated for each base sphere to form the full Voronoi dia-

gram. Because each Voronoi vertex has multiple generating

spheres (four for general position or more for non-general

position), it should be found from all of the Voronoi cells

corresponding to the generating spheres. When the sam-

pling density is insufficient, some Voronoi vertices may not

be found from all the Voronoi cells. For such “incompletely

matched” vertices, from each corresponding base sphere

whose Voronoi cell did not find it, the algorithm shoots a

new ray from the center of the base sphere to the exact lo-

cation of this point (the exact location calculated from the
Fig. 3. (a) Sample points on Voronoi faces for white base sphere with four spheres of the

color map of u-v domains on bounding cube with gray representing sample rays that go

grid-cells indicated by boxes [13] . (For interpretation of the references to color in this figu
other Voronoi cells that found it). The intersection of this

ray with the bounding-box surface is the corresponding u-

v location of the vertex. Around this vertex’s u-v location,

the algorithm constructs a much smaller grid-cell (Fig. 4),

repeating steps 1–5 for the four newly generated u-v points

of the smaller grid-cell. After this targeted sampling around

the vertex, the tiny grid-cell will typically have the 3-color

patterns corresponding to its generating spheres.

Please refer to [13] for complete details of the algorithm.

. Updates in the construction of geometry information

In this section, we revisit some implementation details for the

rior algorithm summarized above. We turn the process of creating

iny grid-cells of incompletely matched vertices into an iterative

earching process (Section 4.1), improving the robustness of the

rior algorithm and establishing the relationship between the tiny

rid-cell and its containing grid-cell. On the u-v domain, we track

he neighboring information between grid-cells by adding pointers

n the data structure, and update the information (pointers) during

ubdivision and the iterative searching process (Section 4.2).

.1. Iterative search for incompletely matched vertices

In step 6 of the prior algorithm, tiny grid-cells are created to

heck if the vertex actually exists in the Voronoi cells that did not

nd it [13] . If the tiny grid-cell is a 3-color or 4-color grid-cell, and

ts colors are consistent with those in the other cells that initiated

he targeted search (Fig. 5 (a)), the vertex exists. (Note that for a

on-general position Voronoi vertex that has more than four cor-

esponding colors (contributing spheres), if the three or four colors

rom the tiny grid-cell are a subset of those corresponding colors,

t is also considered consistent with other contributing spheres.) If

he colors are not consistent, the algorithm will recursively create

ven smaller grid-cells using the same reduction ratio, until a con-

istent 3-color or 4-color grid-cell is found or reaching a maximum

epth of recursion.

The prior algorithm only calculated the Voronoi vertices’ geom-

try, not their connectivity via Voronoi edges. To calculate the lat-

er, we need to connect each of the four sample points on the tiny

rid-cell to each of the corresponding four sample points on its
same size evenly spaced around it, all five with co-planar centers; (b) corresponding

 to infinity; (c) sample point grid on one face of the bounding cube with 3-color

re, the reader is referred to the web version of this article.)

X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342 335

Fig. 5. One iteration in the iterative search process for incompletely matched ver-

tices.

Fig. 6. Color map on a bounding cube (sampling density 5 ∗5).

o

b

i

o

t

4

t

n

t

t

e

m

d

t

4

b

o

f

s

i

p

a

c

i

o

u

b

b

r

c

(

6

g

t

e

Fig. 7. Neighboring information after subdivision.

Fig. 8. Neighboring information after targeted search.

1

h

i

(

t

f

1

b

5

l

c

c

b

c

b

s

c

n

t

s

c

t

p

t

g

t

g

g

“

g

riginal containing grid-cell. For example, as shown in Fig. 5 (b), the

lue sample point on the bottom-right corner of the tiny grid-cell

s connected to the blue sample point on the bottom right corner

f the original grid-cell.

By this process, we will create four new grid-cells (in addition

o the tiny grid-cell). If any of these new grid-cells is 3-color or

-color, it corresponds to a new vertex that has not been found in

his Voronoi cell before (Fig. 5 (c)). We calculate the position of this

ew vertex using numerical iteration and check that it appears in

he Voronoi cells all of its other generating spheres (corresponding

o the 3 colors of the grid-cell). If it is missing for any of the gen-

rating spheres, we repeat this process for this new incompletely

atched vertex (in the u-v domain of any generating sphere that

oes not yet contain it in its Voronoi cell).

We repeat this process for each new incompletely matched ver-

ex, until no more such vertices are found.

.2. Create neighboring information of grid-cells

Just as in the u-v domain we call each group of four neigh-

oring face sample points a “grid-cell,” similarly we call each pair

f neighboring face sample points a “grid-side.” Each grid-cell has

our grid-sides initially (if neighboring cells are subdivided, its

ides will also be split whenever a new sample point is introduced

n the middle of a side). A grid-side connecting a pair of sam-

le points of the same color is called a homogeneous grid-side;

 grid-side connecting a pair of sample points of different colors is

alled a heterogeneous grid-side. Each grid-side has two neighbor-

ng grid-cells that both contain this grid-side. If it is on the edge

f the bounding cube, it is shared by two grid-cells on different

-v parametric surfaces (Fig. 6); these grid-cells are still neighbors

ecause of sharing the same grid-side. Having this kind of neigh-

orhood relationship allows traversing between different paramet-

ic surfaces on the same bounding cube. In the subdivision pro-

ess, we may divide an original grid-cell into four sub-grid-cells

e.g. sub-grid-cells (6, 7, 8, and 9) in Fig. 7). We use sub-grid-cell

 as an example; it shares small grid-sides e 1 and e 2 with original

rid-cell 1 and 5, respectively. In such situations, we still describe

hem as neighboring grid-cells: grid-cells 1 and 6 are neighbors by

dge e , and grid-cells 5 and 6 are neighbors by edge e . Grid-cell
1 2
 has five neighboring grid-cells (2, 3, 4, 6, and 7); Sub-grid-cell 6

as four neighboring grid-cells (1, 5, 7, and 9). As shown in Fig. 8 ,

n the case of iterative targeted sampling, we create a tiny grid-cell

6) around the u-v domain location of the vertex. By connecting

he four corner points of the tiny grid-cell to the corresponding

our corner points of the original grid-cell, grid-cells (7, 8, 9, and

0) are created. Their neighboring information is still determined

y shared edges.

. Construction of edge topology information

In the previous sections, we described how to obtain the exact

ocations of the Voronoi vertices and their corresponding u-v grid-

ells from each of the contributing base spheres. To determine the

onnectivity among the Voronoi vertices, we detect Voronoi edges

y exploring the connectivity of grid-cells on the colored bounding

ubes (u-v parametric surfaces).

Within a Voronoi cell, each Voronoi edge is the intersection

etween two of its Voronoi faces, so neighboring pairs of u-v

ample points of different colors (heterogeneous sides of grid-

ells) indicate the existence of Voronoi edges in its corresponding

eighborhood in 3D space. Each heterogeneous grid-side indicates

he presence of a particular Voronoi edge generated by the base

phere and two spheres corresponding to the two differently

olored sample points. The pair of colors is called the “edge iden-

ifier” of its corresponding Voronoi edge in this Voronoi cell. For a

articular Voronoi edge, we look for heterogeneous grid-sides with

he same edge identifiers. If a grid-cell has two heterogeneous

rid-sides with the same color pair (edge identifier), it indicates

his particular edge enters this grid-cell from the neighboring

rid-cell sharing one such side, and exits to the neighboring

rid-cell sharing the other such side. We call such grid-cells

through-grid-cells” of a particular Voronoi edge because the edge

oes through those grid-cells.

336 X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342

Fig. 9. Voronoi edge topology on bounding cube (sampling density 5 ∗5).

Fig. 10. Four topological configurations and the corresponding 2-color grid-cells.

For example (c), the color of the middle sample after subdivision will typically dis-

ambiguate the two cases, unless the subdivision gives rise to another case (c), in

which case we continue subdividing those sub-grid-cells.

fi

i

t

t

p

w

o

v

d

5

a

F

t

i

v

t

fi

e

b

(

W

t

g

w

n

g

t

t

e

g

a

t

i

t

a

e

E

m

“
As illustrated in Fig. 9 , our algorithm premise is straightfor-

ward: tracing the paths of each Voronoi edge by following series

of its “through-grid-cells.” (Note that henceforth we are using the

term “edge tracing” in this sample-space context; it has no rela-

tion to the “edge tracing algorithm” of Kim et al.) In a grid-cell

containing a Voronoi vertex, each heterogeneous grid-side repre-

sents one particular Voronoi edge that exits into the neighboring

grid-cell that shares this grid-side. Starting from each grid-cell that

contains a Voronoi vertex, we trace the paths of each of its in-

cident Voronoi edges along a sequence of through-grid-cells con-

nected by grid-sides with the edge identifier associated with that

Voronoi edge, until reaching another grid-cell also searching with

the same edge identifier.

Our algorithm has four stages: preprocessing 2-color grid-cells

with particular color patterns (Section 5.1), tracing “through grid-

cells” on the bounding cube (Section 5.2), searching for isolated

Voronoi edges (Section 5.3), and sorting of the Voronoi edges

(Section 5.4).

We now describe the steps in detail.

5.1. Subdivision preprocessing of 2-color grid-cells

There are three possible configurations (and their inverses) of

2-color grid-cells as shown in Fig. 10 .

In configurations (a) and (b), there are two heterogeneous grid-

sides. When tracing the Voronoi edges, if the edge being traced

enters this grid-cell from one of the heterogeneous grid-sides, it

will exit on the other heterogeneous side to the next neighboring

grid-cell.
When the sampling density is insufficient, we might have con-

guration (c). Just as for Marching Cubes [19] , there is insufficient

nformation to determine the topology inside this grid-cell. We use

he same uniform subdivision as in Section 3 step 5 to subdivide

his grid-cell into four sub-cells, and get five new colored u-v sam-

le points. If the four sub-grid-cells are all configuration (a) or (b),

e can determine the Voronoi edge trajectory inside them. If any

f the sub-grid-cell is still in configuration (c), we continue subdi-

iding until no grid-cells have such a configuration, or a maximum

epth of recursion is met.

.2. Tracing Voronoi edges via “through-grid-cells”

After preprocessing all the 2-color grid-cells to configuration (a)

nd (b), all the grid-cells are ready for our edge tracing process.

or each base sphere, the search for Voronoi edges is based on

he colors of the u-v sample points on its corresponding bound-

ng cube. Our search starts at each grid-cell containing a Voronoi

ertex. Such grid-cells are at least 3-color grid-cells, which con-

ain multiple heterogeneous grid-sides with different edge identi-

ers (color pairs). Each such color pair indicates a unique Voronoi

dge emanating from the Voronoi vertex and exiting to the neigh-

oring grid-cell that shares the grid-side with that edge-identifier

 Fig. 11 (a)). We trace this edge to this next (neighboring) grid-cell.

e check if this new grid-cell is a through-grid-cell for the par-

icular edge we are tracing. If so, we identify the other (exiting)

rid-side with the same edge identifier as the grid-side through

hich we entered the grid-cell, and proceed to the corresponding

eighboring grid-cell. We keep tracing the Voronoi edge to its next

rid-cell, and repeat the process above (Fig. 11 (b)). In each itera-

ion, we check if the new grid-cell is also a “through-grid-cell” of

his edge. If so, we proceed to the neighboring grid-cell sharing the

xiting grid-side (with the matching edge identifier), and mark this

rid-cell as “traced” for this particular edge identifier color pair. In

ddition to calculating edge geometry sample points in each itera-

ion, we take the average of the 3D space coordinates correspond-

ng to the two sample points of the exiting grid-side, and using

hat average location as our start point, run Newton-Raphson iter-

tion (similar to Section 3 step 5) to find a point on the Voronoi

dge in actual 3D space.

We trace all unique edges from all Voronoi vertices in parallel.

ach trace terminates when either of the following conditions is

et:

1. The next “through-grid-cell” of the edge is already marked

with the same edge identifier, which means it has met

up with the search from the other end of the same edge

(Fig. 11 (c)). In this situation, we record the connectivity be-

tween the starting Voronoi vertices corresponding to each

path, and combine the 3D sample points we calculated along

the two paths, reversing the order of points from one trace.

Thus we obtain not only the Voronoi edge topology, but also

ordered sample point locations on the edge geometry. These

points can be used for visualization or analysis.

2. The next grid-cell is not a “through-grid-cell” of the edge,

and has one or more sample points at infinity. The exis-

tence of sample points at infinity and the absence of an ex-

iting grid-side with the corresponding edge identifier indi-

cates that the Voronoi edge we are tracing goes to infinity.

(Fig. 3 shows an example with sample points at infinity.) In

this situation, we terminate the search, and record the topol-

ogy information and 3D point locations on the edge geom-

etry of this infinite Voronoi edge. This situation is further

discussed in Section 5.2.2 .

It is also very rarely the case that the next grid-cell is not a

through-grid-cell” of the edge but doesn’t go to infinity, in which

X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342 337

Fig. 11. Topology construction process on a u-v surface (sampling density 12 ∗12); stars indicate the presence of a Voronoi vertex in the grid-cell. Traces from different

vertices are shown with different line styles.

Fig. 12. Edge topology construction process of a non-general u-v parametric face (a)

with an original sampling density 3 by 3. A star indicates the presence of a Voronoi

vertex in the grid-cell. (b) The resulting edge trace topology from the Voronoi ver-

tices is shown with bold lines.

c

c

E

s

T

e

c

o

t

t

t

s

5

i

r

t

g

e

a

s

w

fi

I

c

t

T

n

o

Fig. 13. (a) The tracing path in a grid-cell containing an infinite sample point at

infinity and a new grid-side to update. (b) The actual color pattern inside the grid-

cell (grey represents infinity). (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

o

m

s

G

w

a

m

5

S

c

n

a

e

r

m

i

i

5

c

n

p

(

(

t

w

f

g

e

g

t

ase it needs to be subdivided to continue tracing the edge, as dis-

ussed in Section 5.2.3 .

Finally, we gather all the information from each base sphere.

ach Voronoi edge occurs in the Voronoi cell of at least three base

pheres (three for general position, more for non-general position).

he 3D point locations on the edge geometry will be different for

ach base sphere’s representation of the same Voronoi edge. Be-

ause the choice of 3D points do not affect the accuracy of topol-

gy construction, we randomly keep one group of 3D point loca-

ions for each Voronoi edge.

Some special conditions may bring more complexity into our

racing process. Although the algorithm we described above is able

o handle them, some implementation details should be empha-

ized. We discuss such conditions below.

.2.1. Non-uniform grid-cells

Because of the generation of sub-grid-cells from the subdivid-

ng operation (e.g. Section 3 step 5) and/or from shooting new

ays towards matched vertices from base spheres that did not ini-

ially find them (Section 4.1), sometimes we do not have uniform

rid-cells on the parametric bounding cube. Fig. 12 (a) shows an

xample of non-uniform grid-cells on a parametric face that had

n original sampling density of 2 by 2 cells and had subsequent

ub-grid-cells added by both of these operations.

In the edge tracing process, just like with uniform grid-cells,

e check if the exiting grid-side (with corresponding edge identi-

er) exists among all the grid-sides in this non-uniform grid-cells.

f it does, we continue tracing to the next corresponding grid-

ell, otherwise we subdivide this grid-cell and continue the trace

hrough the new generated sub-grid-cells (details in Section 5.2.3).

he updating process in Section 4.2 still applies to obtain the

eighboring/grid-side information and construct the edge topology

n non-uniform grid-cells (Fig. 12 (b)).
It is necessary to be aware, as described in Section 4.2 , that

n these non-uniform bounding cubes, some grid-cells would have

ore than 4 neighboring grid-cells. When the initial sampling den-

ity is too low, more non-uniform grid-cells will be generated.

rid-cells may even have tens of neighbors. Such poor uniformity

ould damage the efficiency of our parallel algorithm, so choosing

n appropriate initial sampling density is important in the imple-

entation. We will discuss this more in Section 6 .

.2.2. Infinite sample points

Voronoi edges do not always terminate at Voronoi vertices.

ome Voronoi edges extend to infinity, on one or both ends. We

all such Voronoi edges infinite edges.

During our edge tracing process, if the current grid-cell does

ot have an exiting grid-side with corresponding edge identifier,

nd has at least one corner sample point at infinity, this Voronoi

dge extends to infinity in 3D space. In this situation, we will

ecord that this edge extends to infinity and stop the search.

If a grid-cell contains a sample point at infinity, but still has

atched entering and exiting grid-sides, we should continue trac-

ng the Voronoi edge through the grid-cell neighboring at the ex-

ting grid-side (Fig. 13).

.2.3. Additional subdivision for topological disambiguation

During the edge tracing process, the trace might enter a grid-

ell that doesn’t have a clearly matched exiting grid-side, yet has

o sample points at infinity. This situation happens when the sam-

ling density is insufficient. There are two cases: the grid-cell has

1) no other grid-sides with the corresponding edge identifier; or

2) multiple grid-sides with the corresponding edge identifier.

An example of the first case is shown in Fig. 14 (a), where the

arget Voronoi edge is close to another edge but not intersecting

ith it. In this example, if we are tracing the upper Voronoi edge

rom the right to the left, the edge enters grid-cell 1 from its right

rid-side e . Since there are no other grid-sides with the red-blue

dge identifier, grid-cell 1 is not a “through-grid-cell”; we need a

reater local sampling density in grid-cell 1 to continue tracking

his Voronoi edge.

338 X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342

Fig. 14. The subdivision operation on grid-cells that are neither “through-grid-cells”

nor contain sample points at infinity.

Fig. 15. An example of a grid-cell that has more than two grid-sides with the same

red-blue identifier: (a) When the edge tracing enters the middle grid-cell by any

of the grid-side e 1 , e 2 , e 3 , or e 4 , it will have three other grid-sides with the same

(red-blue) edge identifier; (b) the result of the edge tracing process after the middle

grid-cell is subdivided. (For interpretation of the references to color in this figure,

the reader is referred to the web version of this article.)

Fig. 16. (a) The actual vertex and edge location in the u-v domain. (b) The calcu-

lated vertex and edge location in the u-v domain by our algorithm.

t

f

c

5

m

s

i

g

i

F

f

t

c

s

t

c

d

s

i

v

n

i

In this situation, we subdivide the current grid-cell, then con-

tinue tracing on the appropriate new sub-grid-cells by checking

the color identifier over the two new sub-grid-sides generated

from the previous entering grid-side. In Fig. 14 (b), we subdivide

grid-cell 1, then continue tracing on sub-grid-cell (1) at a new

entering grid-side e 1 . The same situation occurs when the trace

enters grid-cell 2 and grid-cell 3; we repeat the subdivision pro-

cess, iteratively subdividing the two grid-cells when the trace en-

ters each of them, and get the edge path as shown in Fig. 14 (c). If

necessary, we repeat the subdivision process until all the grid-cells

along this trace are “through-grid-cells,” or a maximum depth of

subdivision is reached.

At the maximum recursion depth, if we still cannot distinguish

their respective paths, we treat the edges as coincident in this

neighborhood. In Fig. 14 (d), assume all the grid-cells are already

at max recursion depth. When tracing to grid-cell 1, no other grid-

sides match either of the blue-red or blue-yellow edge identifiers

corresponding to the two entering traces. Under the local sam-

pling density at the maximum recursion depth, the two edges are

still too close to each other, with no sample point of the color

(blue) detected on the exiting grid-side (the left grid-side of grid-

cell 1). In this case, we treat the two edges as coincident in the

neighborhood of grid-cell 1, and trace the exiting yellow-red-(blue)

“super edge.” We keep tracing this super-edge by the yellow-red

edge identifier, until the edge identifiers of both the two individ-

ual edges (blue-red and blue-yellow) re-occur (in grid-cell 4). We

then continue each of the individual traces of those two edges.

An example of the second case that requires disambiguation,

where the grid-cell has multiple possible exiting grid-sides with

the same edge identifier, is shown in Fig. 15 . We subdivide such

grid-cells with the same process as the first case, unless it is a

2-color grid-cell in configuration (c) (Fig. 10 (c)), and already met

the maximum depth of recursion (Section 5.1). To disambiguate the
rue layout in that case, we will compare the edge topology result

rom two possible layouts to the results from the other Voronoi

ells that share the edge (Section 5.4).

.2.4. Case of u-v deviation

Under insufficient sampling density, there might be two or

ore Voronoi edges entering a grid-cell through different grid-

ides and exiting through the same grid-side, without intersect-

ng with each other inside this grid-cell. In such situations, the

rid-cell might be 3-color but has no Voronoi vertices located in

ts corresponding 3D space neighborhood. An example is shown in

ig. 16 (a), where two Voronoi edges enter grid-cell 2 through dif-

erent grid-sides (the top and the right grid-sides) and both exit

hrough the same grid-side (the left grid-side). It is a 3-color grid-

ell, but the corresponding vertex geometry is not within its u-v

ub-domain. If we were to shoot a ray directly to this Voronoi ver-

ex, it would be in the u-v sub-domain of grid-cell 1. However, be-

ause of missing the red color, grid-cell 1 only has two colors, in-

icating no existence of Voronoi vertices in the corresponding 3D

pace.

We call this situation a “u-v deviation,” because instead of be-

ng located in the u-v sub-domain of a ray to the actual Voronoi

ertex geometry (grid-cell 1), the vertex location “deviates” to a

earby 3-color grid-cell with the correct color codes correspond-

ng to this Voronoi vertex.

X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342 339

Fig. 17. A high-order Voronoi vertex shared by six Voronoi edges: (a) The actual

vertex and edge location on the u-v domain. (b) The calculated vertex and edge

location on the u-v domain by our algorithm.

o

o

t

s

f

a

fi

s

r

t

g

t

t

t

i

V

t

V

3

c

v

i

t

s

h

V

o

g

V

d

5

h

n

t

a

g

m

t

i

i

f

t

i

t

I

e

p

c

i

i

e

i

t

V

t

s

5

c

V

e

b

s

f

i

s

fi

V

t

d

F

r

Although we may have such “u-v deviations,” the 3D space ge-

metry and topology information for such Voronoi vertices are still

btained correctly. Our 3D space geometry calculation is based on

he bisector equations among the generating spheres (Section 3

tep 5). With the same base sphere and 3-color pattern, starting

rom a different grid-cell around the true u-v location only means

n offset of the iteration start point; the numerical iteration still

nds the correct 3D geometry of the vertex. For the topology, as

hown in Fig. 16 (b), the Voronoi edges correctly connect to the cor-

esponding 3-color grid-cell, even though the grid-cell containing

he actual u-v location of the ray to the vertex is the neighboring

rid-cell (1).

In degenerate cases, if a Voronoi vertex is shared by more than

hree Voronoi edges, multiple corresponding 3-color grid-cells for

he vertex locations will typically exist. In Fig. 17 (a), a Voronoi ver-

ex is shared by six Voronoi edges. In the u-v domain, there ex-

sts four 3-color grid-cells containing vertices (Fig. 17 (b)). In the

oronoi vertex sorting process (Section 3 step 6), we will de-

ermine that these four vertex locations correspond to the same

oronoi vertex because all the calculated vertices have the same

D space coordinates.

In our edge tracing process, connecting to any of these four 3-

olor grid-cells is treated as connecting to this particular Voronoi

ertex. The zero-length “Voronoi edges” between Voronoi vertices

n 3-color grid-cells corresponding to the same actual Voronoi ver-

ex, allow them to be merged when calculating edge topology. As

een in Fig. 17 , “u-v deviation” is what allows us to handle such

igh-order Voronoi vertices. Under non-general position input, a

oronoi vertex may deviate to multiple corresponding grid-cells

n the parametric bounding box, extending the ability of our al-

orithm to detect the vertex’s connectivity with more than four

oronoi edges (even though a non-subdivided grid-cell can at most

etect four Voronoi edges through its four grid-sides).

.3. Detecting isolated Voronoi edges

After the edge tracing process described in Section 5.2 , we will

ave constructed the topology of all the Voronoi edges that con-
ect Voronoi vertices. V

ig. 18. An example of inputs generating infinite isolated Voronoi edges (grey represents

eferred to the web version of this article.)
However, not all Voronoi edges are connected with Voronoi ver-

ices. Two types of isolated Voronoi edges are disconnected from

ny of the Voronoi vertices, and we cannot find them from our

eneral edge tracing process. They are:

1. Infinite Voronoi edges with both ends extending to infinity.

An example of this situation is shown in Fig. 18 , in which

five spheres have their center on the same plane. If we look

at the white sphere’s parametric bounding cube (Fig. 18 (c)),

there are four Voronoi edges with both of their ends corre-

sponding to grid-cells with infinite sample points.

2. Self-connected Voronoi edges. As shown in Fig. 1 (a), this

ring-like Voronoi edge does not have any actual endpoints.

In (Section 5.2), starting from each of the Voronoi vertices, we

arked all the “through-grid-cells” with corresponding edge iden-

ifiers along each tracing path. After the tracing process, we check

f each “through-grid-cell” has been marked for each distinct edge

dentifier of all its grid-sides. If a “through-grid-cell” is unmarked

or any of its edge identifiers, this “through-grid-cell” is related

o an isolated Voronoi edge corresponding to the unmarked edge

dentifier.

We collect all such unmarked through-grid-cells. First we sort

hem into different groups by their unmarked edge identifiers.

f an unmarked “through-grid-cell” has multiple edge identifiers,

ach edge identifier represents a particular isolated edge; it will be

ut in all the corresponding groups. For each group, we randomly

hoose one of its grid-cells as our starting grid-cell, and start trac-

ng the paths of the edge through the two grid-sides correspond-

ng to the two edge identifier colors of this through-grid-cell. In

ach trace, we repeat the same iteration process as for edge trac-

ng (Section 4.1). For the search for each isolated edge, if the two

races both stop at grid-cells indicating infinity (Section 5.2.2), the

oronoi edge is an infinite Voronoi edge with both ends extending

o infinity. If the two traces meet each other, the Voronoi edge is a

elf-connected edge.

.4. Sorting of the Voronoi edges

After calculating all the Voronoi edges (including Voronoi edges

onnected with vertices or isolated Voronoi edges) from each

oronoi cell (base sphere), we combine the edge information of

ach individual Voronoi cell to form the whole Voronoi diagram

y sorting and merging the Voronoi edges detected for each base

phere’s Voronoi cell.

A Voronoi edge has at least three contributing spheres (three

or general position and four or more for non-general position), so

t will have at least three “edge uses” in the Voronoi cells for those

pheres. Each Voronoi edge use has its own 2-color edge identi-

er, and one color code corresponding to the base sphere of its

oronoi cell. We call this unique Voronoi cell related color code

he “cell identifier” of this Voronoi edge use. The color triplet, in-

icates the three contributing input spheres of the corresponding

oronoi edge.
 infinity). (For interpretation of the references to color in this figure, the reader is

340 X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342

Fig. 19. An example of two Voronoi edges (e 1 and e 2) sharing the same three con-

tributing spheres (the green, cyan, and red spheres) and two Voronoi vertices (v 1
and v 2) they connect. (For interpretation of the references to color in this figure,

the reader is referred to the web version of this article.)

e

s

i

V

i

f

s

p

d

s

V

t

S

o

t

r

6

(

e

f

o

s

c

b

m

o

7

e

c

1

i

t

r

p

o

t

m

t

s

u

i

p
We sort all the Voronoi edge uses by these corresponding color

triplets and the Voronoi vertices they connect (typically two, but

special cases of self-connected Voronoi edges with zero or one

Voronoi vertices may exist). For each sorting group with the same

color triplet and corresponding Voronoi vertices, if there are three

Voronoi edge uses in the group and each of them has a differ-

ent cell identifier, the particular Voronoi edge corresponding to

this group exists between the corresponding Voronoi vertices (or

infinities), and can be found in all of its corresponding Voronoi

cells. A rare case occurs when two Voronoi edges exist between

the same corresponding pair of Voronoi vertices, and both of them

were found in the same corresponding Voronoi cells (Fig. 19). In

this case, six Voronoi edge uses are in one sorting group, and cor-

respond to two distinct Voronoi edges.

By this sorting process, we are able to find all the general-

position Voronoi edges, self-connected Voronoi edges, and infi-

nite Voronoi edges in the Voronoi diagram. However, “high-order”

Voronoi edges shared by more than three cells will remain un-

matched, requiring a second round of sorting.

For any of the Voronoi edge uses not satisfying the conditions

in the first sort, we pick one Voronoi edge use and its color triplet

as the first member in its group. Starting from this triplet, we it-

eratively search the remaining unmatched Voronoi edge uses for

those where two of the three colors in the triplet match any mem-

ber triplet colors in the group and have the same correspond-

ing Voronoi vertices to all the members, adding the corresponding

Voronoi edge use as a new member in this group if so. After the

search for the first group, we repeat this process for any remaining

un-grouped Voronoi edge uses, until all of them are grouped. In

each group, if the number of different colors equals to the number

of Voronoi edge uses, and each of them has a different cell iden-

tifier, the particular high-order Voronoi edge corresponding to this

group exists between the corresponding Voronoi vertices (or infini-

ties), and can be found in all of its corresponding Voronoi cells.
Table 1

Thread and kernel information for all steps performed on the GPU. Colors correspond to

Step Per Thread Kernel

Calculate Bisectors Each input sphere Calculates all the bisectors be

Sample Rays Each ray Samples the rays from all inp

Take Lower Envelopes Each ray Calculates the intersections b

minimum ray distance (Sec

Calculate Vertices Each grid-cell Finds the grid-cells containin

Step 4 and 5)

Preprocess 2-color Grid-cells Each grid-cell Checks if the grid-cell is 2-co

and (b) (Section 5.1 Fig. 10

Detect Edges Each trace Starting from each grid-cell c

kernel traces the correspon

Detect Isolated Edges Each trace Starting from a random mem

identifier, the kernel traces
After this second round of sorting, the only unmatched Voronoi

dge uses should correspond to ambiguous grid-cells at maximum

ubdivision depth (Section 5.2.3). Such grid-cells had two possibil-

ties, only one of them is a true Voronoi edge. For such a pair of

oronoi edge uses corresponding to the same ambiguous grid-cell,

f only one of them matches with unmatched Voronoi edge uses

rom other Voronoi cells and can be grouped with them in a con-

istent Voronoi edge, we are done and stop considering the other

ossibility. If neither can be grouped consistently, additional sub-

ivision is needed to disambiguate the corresponding grid-cell.

After these two rounds of sorting, all the Voronoi edge uses

hould be grouped into corresponding Voronoi edges in the

oronoi diagram; otherwise we restart the algorithm, increasing

he initial sampling density and the maximum recursion depth.

imilarly, during the edge-tracing process, if the maximum depth

f recursion is met in any step (Section 4.1, 5.1 , or 5.2.3), we restart

he algorithm with a higher initial sampling density and maximum

ecursion depth.

. GPU framework

Most steps of our algorithm are implemented on the GPU

 Fig. 20) using CUDA programming to exploit data parallelism. For

xample, in the edge detecting step, for all paths we trace (starting

rom all the vertices on all u-v bounding cubes), we use the same

peration that iteratively finds neighboring grid-cells sharing the

ame heterogeneous grid-side. In CUDA, each unit of data is pro-

essed on one GPU thread. The method/function being executed

y all the GPU threads in parallel is called a kernel. Table 1 sum-

arizes the kernel and thread information of each step performed

n the GPU.

. Results

Our algorithm to compute the whole Voronoi diagram (geom-

try and topology) was run on a PC with an Intel ® Core TM Pro-

essor i7-9700K CPU with 16GB RAM and an NVIDIA GeForce GTX

080 Ti graphics card. To test our ability to handle large real-world

nputs, we implemented our algorithm on protein structures from

he protein data bank [20] , where protein molecule structures are

epresented as combinations of atom spheres with different radii.

In the implementation of our algorithm, the selection of appro-

riate sampling density (the number of u-v samples on each face

f bounding cubes) is important for obtaining good parallelism. If

he sampling density is too low, we will not obtain enough infor-

ation to find Voronoi vertices, and then in the calculating ver-

ices step, we will need to subdivide many grid-cells and recon-

truct their neighboring information. Subdivisions will damage the

niformity of the grid-cells, reducing data parallelism, and decreas-

ng the efficiency of our algorithm. On the other hand, if the sam-

ling density is too high, we obtain too many sample points that
the timing breakdown of geometry/topology in Fig. 21 .

tween each sphere and all other input spheres (Section 3 Step 1)

ut spheres (Section 3 Step 2)

etween each ray and all bisectors, keeping the intersection point with

tion 3 Step 3)

g Voronoi vertices and calculate the vertices by numerical iteration (Section 3

lor and in configuration (c), and subdivides such grid-cells to configuration (a)

)

ontaining a Voronoi vertex, for each edge identifier in such grid-cells, the

ding Voronoi edge via “through-grid-cells” (Section 5.2)

ber of each group of unmarked “through-grid-cells” with the same edge

 the corresponding isolated Voronoi edge (Sections 5.2 & 5.3)

X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342 341

Fig. 20. The GPU Framework.

Table 2

Number of subdivisions and deepest level of subdivision with different sampling

densities, for protein 1crn-PDB with 327 input atoms. Total number of grid-cells

includes original grid-cells and sub-grid-cells generated by subdivision and targeted

search.

Sampling

Density

of Subdivision

Operations

Total # of

Grid-cells

Deepest Level

of Subdivision

1 ∗1 4237 15,046 8 th

10 ∗10 405 197,945 5 th

20 ∗20 195 785,660 4 th

40 ∗40 81 3,139,584 3 rd

80 ∗80 23 12,556,922 2 nd

160 ∗160 3 50,227,212 1 st

320 ∗320 0 200,908,800 N/A

Fig. 21. Running time vs. sampling rate, protein 1crn-PDB with 327 atoms.

a

s

r

a

b

d

t

c

h

i

4

s

i

a

s

Fig. 22. Computation time at different sampling densities on protein models: (1)

“1al1-PQR” with 217 atoms; (2) “1crn-PDB” with 327 atoms; (3) “1crn-PQR” with

642 atoms; (4) “1bh8-PQR” with 2161 atoms; and (5) “1JD0-PDB” with 4195 atoms.

5

i

s

f

n

p

(

d

t

o

v

r

d

c

e

a

r

m

t

t

g

i

re unnecessary for finding Voronoi vertices and edges (such as

ample points on 1-color grid-cells). To illustrate this trade off, we

an our algorithm on protein “1crn-PDB” with 327 input spheres

nd different sam pling densities. Table 2 shows how the total num-

er of grid-cells increases along with the increase of sampling

ensity, but the number of subdivision operations decreases. To-

al number of grid-cells includes original grid-cells and sub-grid-

ells generated by subdivision and targeted search. Fig. 21 shows

ow the running time varies with sampling density for the same

nput. Among all the proteins tested, sampling density in the range

0 ∗40 to 50 ∗50 provides the lowest total running time. When the

ampling density is lower than 40 ∗40, the steps up to and includ-

ng calculating vertices (steps of geometry calculation on GPU) take

n extremely long time because of the lack of parallelism in the

ubdivision operation. When the sampling density is higher than
0 ∗50, the parallelism of our algorithm is excellent but the increas-

ng number of unnecessary sample points hurts the running time.

On other protein models we tested containing 217–4195

pheres, the running times also indicated that sampling densities

rom 40 ∗40 to 50 ∗50 were the most efficient (lowest overall run-

ing time).

The total computation time of our algorithm under different in-

ut sizes is shown in Fig. 22 . When the sampling density is lower

e.g. 10 ∗10 here), the computational efficiency is inherently depen-

ent on the geometric distribution of the input spheres, which de-

ermines the data parallelism (number of subdivision operations)

f our algorithm. When the sampling density obviates most subdi-

ision (usually more than 40 ∗40), the computation time increases

oughly linearly with the number of input atoms (spheres).

To test our ability to handle non-general position inputs, we

esigned example inputs in three non-general situations: self-

onnected Voronoi edges, infinite Voronoi edges with both ends

xtending to infinity, and high order Voronoi vertices or edges. Our

lgorithm successfully handled all the non-general situations; one

esult from each of situation is shown in Fig. 1 .

For the verification of our experimental results, we imple-

ented a naive brute-force algorithm for detecting all Voronoi ver-

ices, to serve as ground truth. The algorithm is based on the fact

hat a Voronoi vertex always corresponds to a sphere that is tan-

ent to all of its (four or more) contributing spheres, and does not

ntersect or contain any other input sphere.

342 X. Li, A. Krishnamurthy and I. Hanniel et al. / Computers & Graphics 82 (2019) 332–342

c

a

R

Therefore, for each combination of four spheres from the input,

we calculate their tangent sphere using the algorithm described by

Gavrilova and Rokne [21] , and check if the resulting tangent sphere

intersects (tangent not included) or contains any of the other input

spheres. If not, the center of this tangent sphere is a Voronoi ver-

tex. We exhaustively make this check for all the four-sphere com-

binations and gather the information of all the calculated Voronoi

vertices.

In our experiments, all of the results produced by our algorithm

matched the results from this brute-force algorithm. Furthermore,

in all cases, including large-size inputs from the protein data bank

(the five shown in Fig. 22 and ten other randomly selected pro-

teins) and the non-general position cases, the Voronoi edge cal-

culation is consistent among all the Voronoi cells (meaning there

are no unmatched Voronoi edge uses after two rounds of sorting).

Futhermore, the same output Voronoi diagram vertices and edge

topology is produced for all sample densities that we tested, even

with the coarsest possible initial 1 ×1 sampling (just the 8 corners

of each bounding cube). In the tests, we set the maximum subdivi-

sion depth to 10, and this bound was never met (Table 2); in other

words, less than 10 levels of subdivision was fine enough to trace

all the Voronoi edges.

8. Conclusion

We have presented an algorithm to construct edge topology for

Voronoi diagrams of spheres in R

3 . It successfully handles input

spheres in both general and non-general position, including self-

connected Voronoi edges, infinite Voronoi edges, and high-order

position inputs. We design a GPU framework to exploit data par-

allelism, and find the approximate range of sampling densities to

maximize the efficiency of our algorithm. Under sufficient sam-

pling densities, the total calculation time of the Voronoi diagram

for large inputs is roughly in a linear relationship with the number

of the input spheres.

Declaration of interests

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgements

We gratefully acknowledge support from National Science Foun-

dation grant 1331352 , Zhongyin Hu for the development of the
odebase described in our prior paper, and suggestions from the

nonymous reviewers.

eferences

[1] Richards FM . The interpretation of protein structures: total volume, group vol-
ume distributions and packing density. J Mol Biol 1974;82(1):1–14 .

[2] Voloshin V , Beaufils S , Medvedev N . Void space analysis of the structure of
liquids. J Mol Liq 2002;96:101–12 .

[3] Gavrilova M . Proximity and applications in general metrics. University of Cal-
gary; 1998 .

[4] Will H-M . Computation of additively weighted Voronoi cells for applications in

molecular biology. ETH Zurich; 1999 .
[5] Boissonnat J-D , Karavelas MI . On the combinatorial complexity of Euclidean

Voronoi cells and convex hulls of d-dimensional spheres. In: Proceedings of
the SODA‘03. SIAM; 2003. p. 305–12 .

[6] Kim D-S , Cho Y , Kim D . Euclidean Voronoi diagram of 3D balls and its compu-
tation via tracing edges. Comput-Aided Des 2005;37(13):1412–24 .

[7] Kim D-S , Kim D , Cho Y , Sugihara K . Quasi-triangulation and interworld data
structure in three dimensions. Comput-Aided Des 2006;38(7):808–19 .

[8] Kim D-S , Cho Y , Sugihara K . Quasi-worlds and quasi-operators on quasi-trian-

gulations. Comput-Aided Des 2010;42(10):874–88 .
[9] Kim D-S , Ryu J , Shin H , Cho Y . Beta-decomposition for the volume and area

of the union of three-dimensional balls and their offsets. J Comput Chem
2012;33(13):1252–73 .

[10] Kim D-S , Kim C-M , Won C-I , Kim J-K , Ryu J , Cho Y , et al. BetaDock:
shape-priority docking method based on beta-complex. J Biomol Struct Dyn

2011;29(1):219–42 .

[11] Medvedev NN , Voloshin V , Luchnikov V , Gavrilova ML . An algorithm for three-
-dimensional Voronoi S-network. J Comput Chem 2006;27(14):1676–92 .

[12] Manak M , Kolingerova I . Extension of the edge tracing algorithm to discon-
nected Voronoi skeletons. Inf Process Lett 2016;116(2):85–92 .

[13] Hu Z , Li X , Krishnamurthy A , Hanniel I , McMains S . Voronoi cells of
non-general position spheres using the GPU. Comput-Aided Des Appl

2017;14(5):572–81 .

[14] Hanniel I , Muthuganapathy R , Elber G , Kim M-S . Precise Voronoi cell extraction
of free-form rational planar closed curves. In: Proceedings of the 2005 ACM

symposium on solid and physical modeling. ACM; 2005. p. 51–9 .
[15] Seong J-K , Cohen E , Elber G . Voronoi diagram computations for planar NURBS

curves. In: Proceedings of the 2008 ACM symposium on solid and physical
modeling. ACM; 2008. p. 67–77 .

[16] Hoff III KE , Keyser J , Lin M , Manocha D , Culver T . Fast computation of general-

ized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th
annual conference on computer graphics and interactive techniques; 1999.

p. 277–86 .
[17] Hanniel I , Elber G . Computing the Voronoi cells of planes, spheres and cylin-

ders in R 3 . CAGD 2009;26(6):695–710 .
[18] Elber G , Kim M-S . Computing rational bisectors. IEEE Comput Gr Appl

1999;19(6):76–81 .

[19] Lorensen WE , Cline HE . Marching cubes: a high resolution 3D surface con-
struction algorithm. In: Proceedings of the ACM SIGGRAPH, 21. ACM; 1987.

p. 163–9 .
[20] The RCSB Protein Data Bank. http://www.rcsb.org/pdb/home/home.do ; Ac-

cessed: 2015-12-14.
[21] Gavrilova ML , Rokne J . Updating the topology of the dynamic Voronoi diagram

for spheres in Euclidean d-dimensional space. CAGD 2003;20(4):231–42 .

https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0001
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0001
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0002
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0004
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0005
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0007
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0009
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0010
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0011
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0012
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0012
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0012
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0013
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0014
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0015
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0018
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0019
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0019
http://www.rcsb.org/pdb/home/home.do
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0020
http://refhub.elsevier.com/S0097-8493(19)30101-3/sbref0020

	Edge topology construction of Voronoi diagrams of spheres in non-general position
	1 Introduction and prior work
	2 Terminology and definitions
	3 Prior algorithm to calculate Voronoi vertices
	4 Updates in the construction of geometry information
	4.1 Iterative search for incompletely matched vertices
	4.2 Create neighboring information of grid-cells

	5 Construction of edge topology information
	5.1 Subdivision preprocessing of 2-color grid-cells
	5.2 Tracing Voronoi edges via “through-grid-cells”
	5.2.1 Non-uniform grid-cells
	5.2.2 Infinite sample points
	5.2.3 Additional subdivision for topological disambiguation
	5.2.4 Case of u-v deviation

	5.3 Detecting isolated Voronoi edges
	5.4 Sorting of the Voronoi edges

	6 GPU framework
	7 Results
	8 Conclusion
	Declaration of interests
	Acknowledgements
	References

