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Abstract

Scalable Geometric Processing Techniques with Applications in Characterizing Additively
Manufactured Composites

by

Xiang Li

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

Fiber-reinforced polymer (FRP) composites are widely used in aerospace, marine, automo-
tive, and other industries due to their superior strength-to-weight ratio and corrosion resis-
tance. Analyzing FRP cross-sectional micrographs is one of the most widely used approaches
for defect detection, quality inspection, failure analysis, and computational materials mod-
eling. Although micrographs are widely used, a lack of specialized image and geometric
processing techniques forces materials science researchers to manually analyze images, which
makes the analysis process time-consuming and error-prone.

In this research, efficient and scalable geometric processing algorithms are proposed in order
to characterize FRP materials and inspect their microstructure from microscope images. We
develop two methods to automatically identify a major defect as well as microstructural
feature in FRP composites: the resin-rich areas, which refer to areas of reduced strength
caused by the lack of fiber reinforcements. We apply the concept of alpha-shapes and alpha-
hulls to formalize mathematical definitions of the boundaries of resin-rich areas, and design
efficient and scalable algorithms to compute the defined boundaries. In addition, a fiber
recognition algorithm that automatically identifies and evaluates the breakage of the fiber
cross-sections, and a GPU-based algorithm that efficiently constructs Voronoi diagrams of
spheres/circles, are designed.

These methods enable us to provide statistical analyses to quantitatively characterize the
identified resin-rich areas. The rigorous mathematical definition of resin-rich areas and ability
to collect thorough statistics will facilitate better understanding and quantification of the
relationship between resin-rich areas and material properties.
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Chapter 1

Introduction

1.1 Research motivation

3D printing (3DP), or additive manufacturing, constructs 3D physical objects directly from
digital models by successively depositing material layer by layer. The materials, methods,
and applications of 3DP have been widely investigated due to advantages such as flexible cus-
tomization, quick start to production, and the ability to fabricate complex geometries. Tra-
ditional 3DP systems use isotropic materials, such as metals or plastic filaments, whose me-
chanical properties are identical in all directions (though the layered prints are anisotropic).
Recently, however, significant technical advances in 3DP processes have enabled printing
with anisotropic materials to manufacture continuous fiber-reinforced polymer (FRP) com-
posites [1, 2]. Compared to typical 3DP metal or plastic parts, FRP parts have superior
strength-to-weight ratio in the fiber directions (e.g. lightweight 3D printed FRP parts have
greater tensile strength than aluminum parts [2]).

Continuous FRP composites are anisotropic and heterogeneous materials that are made
of two constituents: the fiber reinforcements, which are the primary load carrying portion
of the composites; and the polymer resin matrix, which binds the fibers together, transfers
and redistributes stresses among fibers, and protects fibers from aggressive (thermal and
chemical) environments.

As reported in [3], the global market size of composite materials was estimated at 89.04
billion USD in 2019, and is expected to keep expanding at a 7.6% growth rate from 2020
to 2027. In the composite markets, FRP composites accounted for more than 95% of the
market share.

Although FRP composites are increasingly popular in industry, microstructural charac-
terization and defect detection for composite parts remains largely manual and inefficient.
Defect detection, failure analysis, and material and mechanical properties of a composite
part are often studied by characterizing its cross-sectional microscope images [4]. In contin-
uous FRP 3D printing, parts are typically printed with a unidirectional or cross-ply laminate
structure [5, 6], in which all fibers in the part, or in the same layer respectively, have the same
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Aligned fibers Misaligned fiber

Matrix

Circular cross-
sections

Elliptical 
cross-section

(a) (b)

Figure 1.1: Diagram of (a) a unidirectional FRP composite; (b) its transverse cross-section
with aligned and misaligned fiber cross-sections appearing as circles and ellipses respectively.

direction. Cross-sectional micrographs, taken transversely to the fiber direction, can effec-
tively assist inspection and analysis of the material microstructure of each 3D printed layer
(cross-ply structure) or the whole printed part (unidirectional structure). In FRP materials,
ideally fibers are aligned and thus have circular cross-sections in the transverse microscope
images, but misaligned fibers may exist, indicating areas of reduced strength; these appear
as ellipses (Fig. 1.2).

Misaligned 
fibers (ellipses)

Aligned fibers (circles)

Figure 1.2: An example of aligned fibers (circular cross sections) and misaligned fibers
(elliptical cross sections).

During development of FRP 3D printing processes, defect detection from microscope
images is an important tool to help researchers analyze the printed parts and improve their
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part quality. For FRP composites, common defects include voids, inclusions, and resin-rich
areas [7]. Detecting voids and inclusions are both relatively well-studied in the material
science community, and are now supported by image processing software such as ImageJ [8].

Compared to voids and inclusions, the detection of resin-rich areas is both more complex
and less well-studied. Unevenly distributed fibers in the resin results in areas with insufficient
reinforcement; such areas are commonly called resin-rich areas (Fig. 1.3) and lead to impaired
mechanical properties and potential part failures [9, 10]. Currently, because of the lack
of specialized image and geometric processing techniques, resin-rich area detection from
microscope images is performed manually by experienced researchers [11], which makes the
process time-consuming and error-prone. Fully automated, end-to-end analysis algorithms
are required to efficiently and accurately process large amount of image data and characterize
their microstructural properties.

Resin-rich
areas

Fibers
Resin

(a) (b)

Figure 1.3: Transverse optical microscope image, and a close-up, showing a cross-section of
fibers and resin.

The objective of this research is to automate the process of characterizing important
microstructural properties of fiber-reinforced polymer (FRP) composites from their cross-
sectional images by developing efficient and scalable geometric processing techniques. In this
research, we will advance the state of the art in spatial partitioning algorithms; utilize those
new algorithms to recognize fiber cross-sections and evaluate their breakage; and identify the
resin-rich area defects and provide an explicit definition of their boundaries. The accurate
identification of fiber cross-sections and resin-rich areas facilitate better understanding of
composite microstructure.

1.2 Resin-rich areas’ relation to composite properties

In FRP cross-sectional images, fiber cross-sections are usually identifiable from their shapes
and pixel intensities, which enable us to analyze the geometric distribution of the fibers.
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Researchers have identified the importance of analyzing the fiber geometry distribution, and
its correlation to composite material properties and failure initiations [12, 13, 14]. One of the
most common phenomena in the cross-sectional images is resin-rich areas, which are both
easy to observe, and useful in the evaluation of material properties.

Yamashita et al. [15] demonstrate the relationship between resin-rich areas and volume
resistivity of carbon-fiber tape reinforced thermoplastics. Smaller, less-frequent resin-rich
areas leads to a higher possibility of contacting fibers, which improves the formation of
electrically conductive paths, resulting in lower volume resistivity. Sacchetti et al. [16] found
a positive correlation between the toughness of unidirectional Carbon/PEEK joints and
the thickness of their resin-rich bond line areas. With a numerical approach, Ghayoor et
al. [10] demonstrated that composite materials with resin-rich areas have lower stiffness and
failure strain, compared to materials without resin-rich areas. According to a recent study
by Ahmadian et al. regarding the failure response of carbon fiber reinforced polymers [17],
although the presence of resin-rich areas does not significantly impact material strength and
toughness under tensile and shear loads, it greatly affects such material properties under
compressive loads.

Resin-rich areas may also indicate the edge/boundary of particular structures in the
composites. For example, in ultra-thin chopped carbon fiber tape reinforced thermoplastics,
resin-rich areas occur at the edge of the tapes [15]. In FRP 3D printed parts, resin-rich areas
occur at the boundary between 3D printing layers. Therefore we can use resin-rich areas as
special patterns to help identify these corresponding structures (tapes or 3D printing layers)
in composite parts.

Since resin-rich areas have a close relationship to material properties and the aforemen-
tioned structures, it is useful to have an efficient algorithm to calculate their sizes and
locations.

1.3 Thesis structure

This thesis is organized as follows. Chapter 2 reviews related literature regarding microstruc-
tural analysis from composite material cross-sectional images, and geometric preliminaries
that will be used in this research.

Then, two approaches, the Voronoi approach and the distance transform approach, are
described to detect resin-rich areas by using exact computation and sample-based techniques
respectively.

The exact computation (Voronoi) approach is described in Chapter 3 and 4. In Chapter 3,
a novel algorithm is proposed to automatically detect and categorize fiber cross-sections from
cross-sectional images. With the exact locations, sizes and shapes of these detected fiber
cross-sections as inputs, a novel algorithm is described in Chapter 4 to automatically detect
resin-rich areas via constructing the Voronoi diagrams and α-shapes of the fibers. The newly
proposed Voronoi and α-shape construction algorithm is specialized to exploit characteristics
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typical of FRP 3D printed parts for significant efficiency gains. In this algorithm, the exact
computation of Voronoi diagrams takes about 80% of the total computation time.

In Chapter 5, in order to accelerate the Voronoi construction process, a novel sample-
based GPU algorithm is presented to construct Voronoi diagrams of spheres/circles. This
chapter demonstrates that a new sample-based Voronoi diagram construction algorithm is
able to achieve sufficient scalability and robustness compared to exact computation methods,
but with a much shorter computation time. This chapter focuses on the design of a sample-
based algorithm for the Voronoi diagram construction, which is only one step in the resin-rich
area detection process. It is possible to design a sample-based algorithm for the whole process
to further increase the computation efficiency.

This fully sample-based (distance transform) approach is described in Chapter 6. In
this chapter, we apply the concept of α-hulls to formalize a mathematical definition of
the boundaries of resin-rich areas, and design an efficient sample-based process to directly
compute the defined boundaries in the discrete image space via the distance transform and
morphological dilation operation. Compared to the exact computation (Voronoi) approach,
this sample-based approach reduces the computation time by 95.3%

In chapter 7, we compare the advantages and disadvantages between our two defect
detection approaches and discuss potential future research directions.

1.4 Statement of multiple authorship and prior

publication

In this dissertation, the fiber recognition and categorization method presented in Chapter 3
is based on the paper [18] published in IEEE International Conference on Image Processing
(ICIP) 2021 conference; the GPU-based Voronoi construction algorithm presented in Chap-
ter 5 is based on the paper [19] published in the journal Computers & Graphics ; and the
distance-transform-based resin-rich area detection presented in Chapter 6 is based on the
paper [20] published in the journal Composites Part B: Engineering.

Although I am the primary author and implementer of the research mentioned above,
this work could not have been done without the support from and collaboration with my
advisor Prof. Sara McMains and my co-authors: Prof. Adarsh Krishnamurthy, Iddo Hanniel,
and Sara Shonkwiler.
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Chapter 2

Background and Related Work

2.1 Prior approaches to the detection of resin-rich

areas

To calculate resin-rich areas from cross-sectional images, researchers have previously pro-
posed algorithms based on the geometric concept of Voronoi diagrams. The Voronoi diagram
is a spatial tessellation method to partition space into Voronoi cells corresponding to each
input object such that any point inside the Voronoi cell is closer to its corresponding object
than any other object.

To estimate the locations of resin-rich areas, researchers [10, 21, 22] first recognize fiber
cross-sections from the FRP cross-sectional image, and then build a Voronoi diagram by
treating centers of recognized fiber cross-sections as input objects. Since there is exactly
one fiber cross-section in each Voronoi cell, the local “fiber volume fraction” inside each
cell is Areafiber/Areacell, where Areacell is the size of the Voronoi cell and Areafiber is the
size of its corresponding fiber cross-section. Thus, if the fiber cross-section areas (Areafiber)
are assumed to be about the same size (which these Voronoi-based algorithms typically do
assume), then large-size Voronoi cells indicate local resin-rich areas (low fiber volume fraction
areas). Large connected resin-rich areas can then be detected by merging neighboring large-
size Voronoi cells.

Yang et al. [22] uses Voronoi diagrams to characterize the non-uniform distribution of
fiber cross-sections, estimate the Voronoi cell sizes, and build a histogram of the estimated
Voronoi cell sizes. Wide distribution of Voronoi cell sizes in the histograms could be used
to indicate the existence of resin-rich areas. Ghayoor et al. [10] partition the cross-sectional
image by the geometric dual structure of the Voronoi diagram (the Delaunay triangulation),
identify large sub-regions by thresholding, and merge neighboring large-size sub-regions to
form the resin-rich areas. Gommer et al. [21] tessellate the fiber bundle area into Voronoi
cells, and calculate the local fiber volume fractions inside each cell. This information is
then used to visualize the local fiber densities among the fiber bundle area and help people
better distinguish the resin-rich areas. Although such Voronoi-based approaches are able
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to provide a rough estimate of resin-rich areas, their applicability is limited because they
assume equally-sized circular fiber cross-sections, which is usually not the case in practice
[17, 23, 24], and they are orders of magnitude slower than our proposed approach based on
α-hulls. Please refer to Section. 6.3.5 for more detailed discussion and comparisons.

2.2 The α-hull and its application

The α-hull, and its close relative, the α-shape, are powerful computational geometry con-
cepts used to delineate boundaries of densely distributed input points. Both α-hulls and
α-shapes are widely utilized in various science and engineering applications such as object
reconstruction from 3D scanned data [25], which reconstructs an object from finite sample
points on its surface or/and interior space; and molecular shape analysis [26], which deter-
mines the surface of protein molecules by treating the centers of their atoms as input points.
The computation of α-shapes from point set inputs is available in software packages such as
MATLAB [27] and CGAL [28].

However, for our application, we need to build α-hulls of fiber cross-sections that appear
as arbitrary shapes instead of points. Since the α-hull concept was primarily designed for
point set inputs, very few studies focus on the construction of the α-hull of arbitrary shapes.
Several researchers have proposed algorithms to construct α-hulls of simple primitive shapes
like circles and spheres [29, 30], but those algorithms cannot handle arbitrary shapes. It
would be possible to implement a brute-force version of our approach that approximates
α-hulls/α-shapes by building on functions available in existing software packages such as the
alphaShape() function in MATLAB by treating each fiber cross-section pixel as an input
point; however, this results in merely a pixel-wise approximation and moreover the overall
computation time is impracticably long (e.g. over 85 minutes for each parameter choice for
a real-world FRP cross-sectional image of 18,270*10,306 pixels; see A).

Therefore, a new algorithm is proposed to construct α-hulls from inputs of arbitrary
shapes to identify resin-rich areas.

2.3 Preliminaries

In this section, we review the background of some geometric concepts that will be used in
this research.

2.3.1 Voronoi Diagram, Dual Triangulation, α-Shape, and α-Hull

Given a set of objects O = {O1, . . . , On} in R2, the Voronoi diagram of O is defined as the
partition of the plane into n Voronoi cells, where each Voronoi cell is the set of all points
closer to a particular input object Oi than to Oj (∀j 6= i).

Within the Voronoi diagram, Voronoi edges are common boundaries between two adjacent
Voronoi cells. Any point on a Voronoi edge is equidistant to its two corresponding input
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objects. The intersections of Voronoi edges are Voronoi vertices. Each Voronoi vertex is
equidistant to all of its corresponding input objects.

Because of this equidistance property, a Voronoi vertex always corresponds to the center
of an empty circle that is tangent to all of the vertex’s corresponding objects. Following
the nomenclature for Voronoi diagrams of points, we call this a circumcircle, centered at the
Voronoi vertex, having as its radius the distance between the Voronoi vertex and the corre-
sponding objects. It does not overlap with the interior of any input object (see Fig. 2.1(b)).

(a) (b)

(c) (d)

Figure 2.1: Voronoi diagram and dual triangulation of a set of input circles with different
radii. (a) Voronoi diagram, (b) Voronoi vertices and corresponding circumcircles, (c) dual
triangulation of the same input, (d) superimposed Voronoi diagram and dual triangulation,
illustrating their duality.

The calculation of Voronoi vertex geometry is identical to the calculation of the circum-
circle of a set of three corresponding objects. In our application, we focus on circle and
ellipse inputs. We use the circumcircle calculations for circles and ellipses detailed in [31,
32] respectively.

The dual triangulation (see Fig. 2.1(c)) is the dual structure of the corresponding Voronoi
diagram. It satisfies the following duality properties:
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• Each Voronoi vertex corresponds to a bounded face in the dual triangulation. The
corresponding circles or ellipses of the Voronoi vertex are the dual triangulation face
vertices.

• Each Voronoi edge corresponds to an edge (perpendicular to it for circle inputs) in the
dual triangulation.

• Each Voronoi cell corresponds to a vertex in the dual triangulation. Vertices in the
dual triangulation are centers of the input circles or ellipses.

The relationship between a Voronoi diagram and the corresponding dual triangulation is
illustrated in Fig. 2.1(d).

Probe with 
radius 𝛼𝛼

(c)

(b)(a)

(d)

Fiber-deficient 
area

Figure 2.2: The α-hull and α-shape of circle inputs. (a) input; (b) probe with radius α
moving around the space without colliding with any input; (c) α-hull; (d) α-shape.

The α-hull and α-shape are computational geometry concepts invented by Edelsbrunner
et al. in 1983 [33] that was originally designed for point set inputs. In [34], Edelsbrunner
and Mucke provide an intuitive description of the three-dimensional α-hull and α-shape:

“Think of R3 filled with Styrofoam and the points of S made of more solid
material, such as rock. Now imagine a spherical eraser with radius α. It is
omnipresent in the sense that it carves out Styrofoam at all positions where it
does not enclose any of the sprinkled rocks, that is, point of S. The resulting
object will be called the α-hull. To make things more feasible we straighten



CHAPTER 2. BACKGROUND AND RELATED WORK 10

the surface of the object by substituting straight edges for the circular ones and
triangles for the spherical caps. The obtained object is the α-shape of S.”

Now apply this intuition to two dimensional circle and ellipse inputs: for a set of circle and
ellipse inputs representing the fiber cross section (Fig. 2.2(a)), we use a probe with radius α
to move around the whole 2D plane without overlapping any of the inputs (Fig. 2.2(b)). The
union of regions where the probe cannot reach is the α-hull (Fig. 2.2(c)). We straighten the
boundary of the alpha hull with straight edges, and obtain the α-shape (Fig. 2.2(d)). In our
application, the α-hull or α-shape regions indicate the places where fibers are close to each
other, since the probe cannot be placed without colliding with fibers, and the complementary
regions of the α-hull or α-shape are the actual fiber deficient areas.

The α-shape can be constructed from the dual triangulation with the help of another
concept: the α-complex. The α-complex is a simplicial complex that closely relates to the α-
shape and the dual triangulation: it is a subset (subcomplex) of the dual triangulation where
the elements (triangular faces and edges, also called simplices) are inaccessible by the α-
probe; and the union of such elements is the α-shape (Fig. 2.3).

Probe size

(a) (b) (c)

Figure 2.3: An example of the relationship among: (a) dual triangulation; (b) α-complex;
(c) α-shape.

Note that the concepts of Voronoi diagrams and α-shapes were originally defined for
point set inputs. Voronoi diagrams were then generalized to handle arbitrary objects, and
these are sometimes referred to as “generalized Voronoi diagrams,” but often “generalized”
is omitted. Similarly, although we are generalizing α-shapes to handle arbitrary objects, we
will just refer to them as α-shapes instead of “generalized α-shapes.”

2.3.2 Distance transform

The distance transform is an image processing operation applied to binary images [35]. As
illustrated in Fig. 2.4(a) and 2.4(c), a binary image includes foreground regions/pixels (1s)
and background regions/pixels (0s). The distance transform takes the binary image as the
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input, and returns a value for each pixel that is its distance to the nearest background pixel
(Fig. 2.4(b)). The background pixels will have values of zeroes in the distance transform
because they have zero distance to themselves; the foreground pixels will have values greater
than zero and reflect how far they are from the nearest background pixel. The distance
transform is usually visualized as a grayscale image where the pixel intensities show the
corresponding distance values of each pixel (Fig. 2.4(d)). Pixels farther from the background
regions have higher distance values and therefore higher intensities (brighter) in the grayscale
image visualization of the distance transform.

1 0 1 1 1 1

0 0 0 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

Input Distance Transform

1 0 1 2 5 10

0 0 0 1 2 3

1 1 1 2 2 5

2 2 2 1 1 2

3 2 1 0 0 1

3 2 1 0 0 1

(a) (b)

(c) (d)

Figure 2.4: An example of the distance transform. The first row shows the matrix format:
(a) the binary input and, (b) its distance transform; the second row visualizes these matrices:
(c) the (same) input and, (d) its distance transform.

2.3.3 Morphological dilation

Morphological dilation (usually denoted as ⊕) is a basic operation in mathematical morphol-
ogy. As illustrated in Fig. 2.5, for any two arbitrary 2D shapes A and B, the morphological
dilation of A by B is defined as:
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A⊕B =
⋃
b∈B

Ab (2.1)

where Ab is the translation of A by b. The translation of A by b = (bx, by) is further
defined as:

Ab = {c | c = a+ b, for all a ∈ A} (2.2)

where c = (cx, cy) = (ax + bx, ay + by) = a+ b.
The morphological dilation operation can be interpreted in a more intuitive way. From

Fig. 2.5, if A is a random shape and B is a circle with center Bc, the dilation of A by B
(A⊕B) is the union of all the areas covered by B when Bc moves inside A.

A

B

A⊕B

Figure 2.5: An example of the morphological dilation operation. Shape A is the blue square;
structuring element B is the dashed black circle; and the morphological dilation of A by B
(A⊕B) is the union of the yellow and blue areas.

In mathematical morphology of 2D images, A is usually an input binary image, and B
is usually defined as a circle/probe that is called the structuring element.

2.4 Summary

In this chapter we have reviewed prior approaches to resin-rich area detection, the concept
of α-hulls/shapes, and mathematical definitions of other (supporting) geometric concepts
relevant to this research. In later chapters (Chapter 4, 5, and 6), we will show how α-
hulls/shapes can be applied to define resin-rich areas, and how to construct α-hulls/shapes
using those supporting geometric concepts. First, however, as inputs in the construction
of α-hulls/shapes, the fiber cross-sections must be recognized from the microscope images.
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In the next chapter, we will introduce a novel algorithm to automatically recognize fiber
cross-sections, and evaluate their breakage.
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Chapter 3

Fiber Recognition in Composite
Materials

3.1 Introduction

As discussed in Section 1.1, because of the differing characteristics of the fiber reinforcements
and polymer matrix, the geometric distribution of the fibers is the key factor for microstruc-
tural characterization of FRP composites. From their transverse microscope images, we
are able to characterize the microstructure of FRP composites by recognizing fiber cross-
sections and evaluating their breakage (Fig. 3.1). The effectiveness of the microstructural
characterization relies on the accuracy of the fiber recognition process.

Furthermore, accurately recognizing fiber cross-sections is the prerequisite for resin-rich
area detection. It is impossible to correctly detect areas where fibers are locally deficient
without knowing the exact locations and sizes of these fibers.

Recognizing fibers from the microscope image usually follows a two-step process: (1)
segment fibers that contact each other into individual fiber pixel blob regions; (2) fit a circle
or an ellipse to each individual fiber pixel blob. Mlekusch [36] separated the touching fiber
regions into individual fiber segments based on their convexity, and then fitted contour points

Misaligned 
fiber (ellipse)

Broken fibers

Aligned 
fibers (circles)

Figure 3.1: An example of a closeup of an input microscope image
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of each segment into ellipses based on a regression calculation. In [37], Martin-Herrero et al.
detected individual fiber blobs by using successive mathematical morphology operations, and
then fitted ellipses to them based on least-squares orthogonal distance fitting [38]. Amjad
et al. [39] applied a marker-controlled watershed segmentation to identify fibers, and then
approximated them as ellipses by a Hough-transform-based ellipse detector [40]. The above
methods performed well under the assumption that all the fibers are undamaged fibers
(circles or ellipses); however, broken fibers are common in FRP composites (Fig. 3.1). An
accurate method to recognize both the broken and complete fibers is necessary and is crucial
to the overall evaluation of the composite material.

In this chapter, we present a novel method to automatically recognize fibers in composite
material cross-sectional images, whether they are aligned or misaligned, complete or broken.
This method first segments the binarized input image into individual fiber pixel blobs using
watershed segmentation, and then identifies their breakage and fits circles or ellipses to them.
To better identify the fiber breakage, we introduce a new method, called contour gradient
charts, that efficiently distinguishes complete and broken fibers and further helps with the
circle/ellipse fitting.

3.2 Fiber blob detection

Since the fiber cross-sections all appear as complete or broken circular/elliptical blobs in
the input image, we first detect blob areas for each individual fiber. Fig. 3.2 illustrates
the steps of our fiber blob detection process: (a) converting the input image to grayscale;
(b) binarizing the grayscale image and removing noise; (c) building the distance transform
from the binary image; (d) applying watershed segmentation on the distance transform; (e)
merging oversegmented regions.

Beginning with the original microscope image, we convert it to grayscale and apply
Gaussian smoothing to reduce noise (Fig. 3.2(a)). In the smoothed grayscale image, fiber
pixels have observably higher intensity values than the resin matrix pixels. Based on the
intensity contrast between fiber and matrix pixels, we convert the grayscale image into a
binary image using Otsu’s histogram-based global thresholding method [41] and denoise it
(Fig. 3.2(b)). We do so by identifying connected fiber (white in the image) pixel regions
below a minimum number of pixels. In our experiments, we found removing regions with
fewer than 10 connected pixels (about 10% of fiber cross-section size) led to good fiber
detection results.

After denoising, each individual connected fiber pixel region in the binary image corre-
sponds to one of the following: an individual fiber, a group of contacting fibers, or a chunk of
broken fiber. To segment individual fiber blobs from regions of contacting fibers, we exploit
distance-transform-based watershed segmentation, as follows.

From the binary image, we build a Euclidean distance transform [42] that assigns each
pixel its distance to the nearest polymer (matrix) pixel (Fig. 3.2(c)). The local maximum
values in the distance transform efficiently indicate the centers of each individual fiber. We
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: The procedure for fiber blob detection: (a) grayscale; (b) binarization and
cleaning; (c) distance transform; (d) watershed segmentation; (e) merging oversegmented
regions; (f) result: individual fiber pixel blobs.

then run watershed segmentation [43] on the distance transform, separating contacting fibers
into individual fiber blobs (Fig. 3.2(d)).

In the continuous space, perfect circles and ellipses only have one local maximum distance
point at their centers. However, since the composite images are represented in discrete
pixels, the fibers are not perfect circles or ellipses, which may cause multiple local maxima
being calculated near the fiber center point. As illustrated in Fig. 3.2(d) left red box,
this can cause an oversegmentation in the watershed segmentation. Broken fibers may also
be oversegmentated because of their irregular shapes (Fig. 3.2(d) right red box). To deal
with these oversegmentation problems, after the watershed segmentation, we merge detected
regions whose local maxima in the distance transform were close and that were also connected
in the binary image (Fig. 3.2(e)).

The output of the fiber blob detection is pixel blobs representing detected individual
fibers (Fig. 3.3). Next (Section 3.3), we will describe how we identify their breakage, and
compute their locations accordingly.

3.3 Fiber breakage evaluation and localization

After identifying the pixel blobs for each fiber, we propose a novel tool called contour gradient
charts to help determine if they are broken. Based on the analysis from the contour gradient
charts, we select unbroken contour pixels and fit a circle or ellipse to each fiber.



CHAPTER 3. FIBER RECOGNITION IN COMPOSITE MATERIALS 17

(a) (b) (c)

Figure 3.3: Real-world examples of different fiber blob types: (a) complete aligned fiber; (b)
complete misaligned fiber; (c) broken fiber.

3.3.1 Breakage evaluation via Contour Gradient Charts

Our approach to determining whether a fiber blob is broken or not is based on a simple yet
powerful idea: for complete fiber blobs, the gradient direction along the boundary varies
smoothly along all its contour pixels; for broken fiber blobs, the gradient direction varies
smoothly only along the contour pixels bounding its unbroken portion, but rapidly changes
at the broken portion of the contour pixels. This property enables us to determine if a fiber
blob is broken by checking if rapid gradient changes exist along its contour pixels.

We define the gradient direction of a boundary point (assuming a continuous perfect
circle for illustration) to be perpendicular to its tangent line and into the circle. An example
is illustrated in Fig. 3.4, where twelve points are evenly sampled on the circle in clockwise
order (from P1 to P12), with gradient directions for examples P1, P5, and P10 shown.

P1(0𝑜𝑜)

P5(240𝑜𝑜)

P10(90𝑜𝑜)

0𝑜𝑜

90𝑜𝑜

180𝑜𝑜

270𝑜𝑜

Figure 3.4: An example of contour sample points and their gradient directions.

We create a “Contour Gradient Chart” (CGC) to illustrate the gradient direction change
along the boundary sample points. In the chart, x values are the sample points on the con-
tour of the circle in clockwise order and y values are their corresponding gradient direction
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angles (Fig. 3.5(a)). To analyze the rate of change of gradient angles, we take the deriva-
tive (numerical gradient) of the CGC modulo 360°and call it the “first derivative CGC”
(Fig. 3.5(b)).

(a) (b)
Contour Gradient Chart (CGC) 1st Derivative CGC

Figure 3.5: Contour gradient charts of the example in Fig. 3.4.

Now considering the fiber blobs detected from Section 3.2, we construct CGCs of each by
selecting their contour (boundary) pixels as the sample points. For these contour pixels, we
use the Sobel-Feldman operator to calculate their gradient vectors. The discretized contour
pixels bring noise to the calculation of the gradient, but after applying a moving average
operation, the gradient direction changes between sample points are small and approximately
constant because of the smoothness of complete circles and ellipses (Fig. 3.6). Call the
number of sample points N . The sum of all the signed gradient direction changes will total
360° along all boundary pixels, so the average value of gradient direction changes, which
should be close to the approximately constant value for unbroken fibers, is −360°/N in the
first derivative CGC.

However, for broken fibers, dramatic gradient direction changes occur at the break points.
It is easy to observe and classify the broken fibers and complete fibers from their first
derivative CGCs by detecting if there are large gradient direction changes or not (Fig. 3.6
and 3.7). Furthermore, the unbroken portion of the contour can be identified using the first
derivative CGC. Similar to a complete fiber blob, the corresponding range of the unbroken
portion of a broken fiber would be seen as a long period of approximately constant gradient
changes around −360°/N in the first derivative CGC (Fig. 3.7).

3.3.2 Circle and ellipse fitting

The final step is to fit a circle or an ellipse to the candidate contour pixels of each fiber
blob. For complete fibers, all of their blob boundary pixels are taken as the candidate pixels;
for broken fibers, only the selected unbroken portion of boundary pixels are the candidate
pixels.
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Figure 3.6: Example first derivative CGC of fiber blobs from Fig. 3.3. The circular, elliptical,
and broken fibers have NC=46, NE=58, and NB=45 boundary pixels, respectively. Complete
fibers (circle/ellipse) have steady gradient direction changes close to −360°/NC = −7.8° or
−360°/NE = −6.2°; the broken fiber has dramatic changes exceeding −360°/NB = −8°.

Since a circle is a special case of an ellipse, we choose to apply a direct ellipse fitting
algorithm [44] to our candidate pixels in order to simultaneously handle both aligned and
misaligned fibers (Fig. 3.8).

3.4 Experimental results

We tested our proposed method on more than 30 real-world microscope cross-sectional im-
ages from 3D printed FRP parts. The images have an average size of 18,000*9,500 pixels
and contain about 500,000 carbon fiber cross-sections, with 7-8% broken fibers. The cat-
egorization and localization (the calculation of fiber boundaries) output of our algorithm
on the test images was manually examined by material experts, who found no errors with
our method’s results for almost all fibers (>99.9% overall correctness, >99% correctness for
broken fibers). Typical classification failures occur when the breakage is fully inside a fiber,
or an inclusion with nearly smooth contour exists (Fig. 3.10(a, c)). In such cases, since no
rapid gradient changes exist along the fiber boundaries, our algorithm falsely identifies them
as complete fibers (Fig. 3.10(b, d)).

To the best of our knowledge, our approach is the first method that can robustly recognize
broken fibers and calculate their fitting circles/ellipses. In contrast, direct circle/ellipse
detection methods [40, 45] are generally based on the theory of the Hough transform, which
is sensitive to noise. Because there is often fiber debris (noisy pixels) around the breakage
locations, the direct detection methods are prone to generate false positive detections around
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Figure 3.7: Selected unbroken portion of contours are shown in red in (a) first derivative
CGC, and (b) its corresponding fiber blob. Red stars demonstrate dramatic gradient direc-
tion changes and their relations to the actual break points.

Figure 3.8: Circle/ellipse fitting results for different fiber blob types. The input pixels are
rendered in light red.

the broken fibers (Fig.3.11(b)). Fiber blob segmentation and ellipse fitting methods [39,
36, 37] efficiently eliminate the noisy pixels by the blob segmentation process, but they
are unable to recognize breakage in the fibers. The contour pixels on the broken portion
may cause inaccurate circle/ellipse fitting (Fig.3.11(c)). Our proposed method only selects
contour pixels on the unbroken portion after eliminating noisy pixels during the fiber blob
detection process, and only then fits ellipses to identify misaligned fibers. These operations
lead to a more robust and accurate detection of the broken fibers (Fig.3.11(d)).

3.5 Conclusions

In this chapter, we propose a novel fiber recognition algorithm, for cross-sectional microscope
images of composite materials that detects all types of fibers and distinguish which are
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(a)

(b)

Figure 3.9: Experimental results: (a) the input image; (b) recognized complete (blue) and
broken (red dotted) fibers.

(a) (b) (c) (d)

Figure 3.10: Failure cases: (a-b) a broken fiber with only inner breakage is falsely identified
as a complete fiber; (c-d) (two) inclusions falsely identified as complete misaligned fibers.
(Incorrect identifications are shaded red-beige.)

broken, unbroken, and/or misaligned. We introduce contour gradient charts, which enable
identifying broken fibers as well which boundary pixels are on their unbroken contours,
for more accurate circle and ellipse fitting. The performance is validated on real-world
microscope images from 3D-printed fiber-reinforced polymer parts, on which our method is
able to correctly identify and classify over 99.9% of fibers.



CHAPTER 3. FIBER RECOGNITION IN COMPOSITE MATERIALS 22

(a) (b) (c) (d)

Figure 3.11: Comparison of results of our method and other popular methods on a broken
fiber: (a) input; (b) direct circle/ellipse detection [40, 45]; (c) fiber blob segmentation and
ellipse fitting [39, 36, 37]; (d) our method.
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Chapter 4

Defect Detection from Microscope
Images: Voronoi Approach

4.1 Introduction

In this chapter, we present a novel algorithm to automatically detect resin-rich areas from
microscope images of 3D printed FRP parts. This algorithm takes the result of the fiber
recognition process (as described in Chapter 3) as the locations of fibers, and determines
the resin-rich areas from the input circles and ellipses using their Voronoi diagram and
corresponding α-shape [33]. Our main contributions include:

• A novel approach to automatically find resin-rich areas in microscope images of 3D
printed FRP parts using α-shapes. Both aligned and misaligned fibers are considered.

• Fast computation of the Voronoi diagram and alpha-shape of circles and ellipses using
an approach specifically designed to exploit the characteristics of FRP composites. It
is especially efficient when the majority of the fiber cross-sections are of similar size.

• Validation of our method on real-world microscope images. Our algorithm robustly
detects resin-rich areas in real-world microscope images containing 100,000 fibers in
3.5 s, and 1,000,000 fibers in 70 s (excluding the time taken for circle and ellipse
detection, which depends strongly on the resolution of the microscope image).

4.2 Related work

4.2.1 Voronoi diagram of circles and ellipses

Multiple algorithms have been proposed to calculate the Voronoi diagram of circles. Kim
et al. proposed an algorithm that uses the ordinary Voronoi diagram of the circle centers as
a seed, and then updates its topology by a series of edge-flipping operations [46, 31]. Jin
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et al. report a sweepline algorithm that handles circle inputs in arbitrary locations. The
input circles are allowed to intersect or even fully contain each other [47]. Lee et al. designed
an efficient topology-oriented incremental algorithm that robustly constructs the Voronoi
diagram of 100,000 input circles in seconds, while handling degenerate cases [48]. Some
approaches for constructing the 3D Voronoi diagram of spheres, such as region expansion [49]
or GPU ray-casting [50, 19], have 2D analogs for efficiently computing Voronoi diagrams of
circles.

Beyond circles, the method of Emiris et al. [32, 51] can construct Voronoi diagrams of
both circles and ellipses. However, it takes about 60 s to process 200 input ellipses [51], and
is impractical for applications with larger numbers of inputs.

Currently, no existing methods can efficiently construct the exact Voronoi diagram of
inputs with large numbers of both circles and ellipses. Some approaches are efficient for
circle inputs [46, 31, 47, 48], but are difficult to extend to ellipse inputs; others handle both
circle and ellipse inputs [32, 51], but are slow for large numbers of inputs.

Our inputs are predominantly composed of circles of essentially the same size with very
few exceptional ellipses and large-size circles, and we have designed an efficient method to
calculate exact Voronoi diagrams of inputs having these properties.

4.2.2 The α-shape of objects and its application

The α-shape is a computational geometry concept originally introduced for point set in-
puts [34] that captures the shape that could be accessed by a probe of radius α without
intersecting the inputs. Generalizing α-shapes from point inputs to spheres, Kim et al. elu-
cidated the relationship between the α-shape of input consisting of spheres of different radii,
their Voronoi diagram, and its dual triangulation, and proposed efficient algorithms for their
construction [52]. Inspired by this approach, we have developed a new method to construct
the α-shape of input comprising circles and ellipses, and use its complementary regions to
determine the resin-rich areas.

4.3 Algorithm overview

The main idea of our algorithm is to use α-shapes to evaluate the proximity among the
cross-section of fibers in the microscope image, and detect the areas where fibers are locally
deficient.

Fig. 4.1 illustrates the steps of our algorithm:

0. (Preprocessing). Detecting the locations and sizes of complete fiber cross sections in
the input microscope image, using the method described in Chapter 3).

1. Constructing the Voronoi diagram based on the fiber geometries.

2. Constructing the dual triangulation from the Voronoi diagram.
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(a) (b) (c)

(d) (e) (f)

Detected 
area 1

Detected 
area 2

Boundary regions

Probe size

Figure 4.1: Algorithm overview: (a) input microscope image, (b) circle detection, (c) Voronoi
diagram, (d) dual triangulation, (e) α-shape in the refined region, (f) resulting resin-rich
areas, the complement of the α-shape. The boundary region is the complement of the
refined region, and is ignored.

3. Calculating the refined region to focus on (as well as its complement boundary region).
Build the α-shape from the dual triangulation in the refined region, identifying areas
where fibers are close together.

4. Calculating the complement of the α-shape, giving the resin-rich areas. Further check
and divide them into sub-areas if necessary.

Transverse cross-sectional microscope images of 3D printed FRP materials have the fol-
lowing characteristics:

• A typical image contains hundreds of thousands of fiber cross-sections.

• Most fibers are aligned, appearing as circles of about the same size, with a few appear-
ing larger. Only a few fibers are misaligned, appearing as ellipses.

Our algorithm is designed specifically for these input characteristics. The construction
of the Voronoi diagram and α-shape is designed for efficiency for inputs consisting primarily
of identical radius circles, with a relatively small number of ellipses and circles of large radii.
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4.4 Construction of the Voronoi diagram

4.4.1 Approach

Preprocessing the microscope image provides a set of circles and ellipses representing the
locations and sizes of the detected fibers. In the next step, we build the Voronoi diagram of
these circles and ellipses.

Recall that most fibers have circular cross-sections with identical radius, with a few
exceptions having larger radius or are elliptical. For convenience, we will call the majority,
identical circles regular input sites, and the exceptional size circles or ellipses special input
sites. The input sites may slightly overlap each other, but none are fully contained within
others (i.e. there are no hidden sites).

The construction of the Voronoi diagram follows a simple idea: we first build a Voronoi
diagram assuming all inputs are regular input sites. We then expand the Voronoi cell of
each special input site, one after another, gradually transforming the preliminary Voronoi
diagram to the final Voronoi diagram. We call this process the cell-expansion method.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Cell-expansion process: (a) input, (b) ordinary Voronoi diagram, (c,d) expanding
the Voronoi cell of one special site, (e) expanding the Voronoi cell of the second special site,
(f) result. The expanding input sites and Voronoi cells are in red.
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Fig 4.2 shows an example of the serial cell-expansion process. The input consists of four
regular sites and two special sites (see Fig. 4.2(a)). We first calculate the Voronoi diagram
assuming all input circles are regular sites (see Fig. 4.2(b)). Constructing the Voronoi dia-
gram of a set of identical circles is the same as constructing the ordinary Voronoi diagram
of a set of points; in our implementation, we use the Triangle library by Shewchuk [53] to do
so. This library uses a data structure that simultaneously represents the ordinary Voronoi
diagram and its dual triangulation. Starting from the ordinary Voronoi diagram, we iter-
atively expand the Voronoi cells of each special site in random order, updating the cells’
geometry and topology in the data structure (see Fig. 4.2(c–e)), until all special sites have
been processed (see Fig. 4.2(f)). Note that Voronoi edges that are straight line segments for
equi-sized circle input generally become curved when their neighbors are special sites.

e5
v2

v3 v4

v5 v6

e1

e2

e3

e4

v1

e6

e7 e8

Figure 4.3: An expanding Voronoi cell (red) with: cell vertices v1–v4, cell edges e1–e4,
radiating edges e5–e8, and neighboring vertices v5, v6.

In Fig. 4.3, suppose we are extending the red circle and its Voronoi cell. Its cell vertices
are v1–v4, and its cell edges are e1–e4. Voronoi edges connected to cell vertices, but not
cell edges, are radiating edges of the expanding cell: e5–e8. Voronoi vertices connected to
radiating edges but not cell vertices are neighboring verticesof the expanding cell: v5 and
v6).

Some Voronoi cells are unbounded, with Voronoi edges having one or both or ends at
infinity. We call such edges infinite cell edges ; we treat them as connected to distinct cell
vertices at infinity. An example of an unbounded Voronoi cell is shown in Fig. 4.4. Suppose
we are expanding the red circle and its Voronoi cell. Then e3 and e4 are infinite cell edges
connected to different cell vertices at infinity, v4 and v5 respectively.

As we increase the size of a particular input site, its corresponding Voronoi cell expands
accordingly. Kim et al. showed that for 3D Voronoi diagrams of spheres, during the Voronoi
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v2

v3

e4

e2

v1e1

v5 (∞)

v4 (∞)
e3

Figure 4.4: An expanding unbounded Voronoi cell (red) with: regular cell vertices v1–v3, cell
vertices at infinity v4, v5; regular cell edges e1, e2, and infinite cell edges e3, e4.

region expansion process, topology changes only occur at Voronoi vertices or edges. Thus,
it is sufficient to only consider the status of the edges and vertices of the expanding Voronoi
cell for topology changes [49]. We state an analogous theorem for the 2D Voronoi diagram
of circles and ellipses:

Theorem 1. In a 2D Voronoi diagram of circles and ellipses, when a specific Voronoi cell
is expanded, topology changes only occur at cell vertices, but not at cell edges.

Proof. Suppose the theorem is false, i.e. topology changes may also occur at cell edges. Dur-
ing the expansion process, such cell edges would intersect other Voronoi cells, generating
new Voronoi vertices on the edge. Consider Fig. 4.5. As cell 1 expands, its cell edge (red)
intersects another Voronoi cell (cell 2), locally dividing cell 3 into cells 3 and 3’, and generat-
ing a new Voronoi vertex. As explained in Section 2.3.1, the new vertex has a corresponding
circumcircle that is tangent to the objects in each of its generating cells. So in this case, the
input object of cell 3 must have tangent points to the circumcircle for both cell 3 and cell
3′. However, this contradicts our assumption of convex inputs (circles and ellipses), since a
convex shape only has at most one tangent point to a circle. Hence, the theorem is valid.

During the serial cell-expansion process for all special sites, during the expansion of each
special site, our algorithm follows a two-step process to detect potential vertex status and
topology changes:

1. Check if the expanding site has infinite cell edges, which may generate new vertices.
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cell 1

cell 2

cell 3

cell 1

cell 2

cell 3 cell 3’ cell 3’
cell 3

(a) (b) (c)

Figure 4.5: Topology changes at cell edges during expansion. This situation only exists for
non-convex inputs, and not for circle and ellipse inputs.

2. Next, for each cell vertex, check its interaction with neighbors by tracing along radi-
ating edges. Each vertex might collide with a neighbor vertex, disappear, or remain
unchanged in its topology.

We now explain each step in detail.

4.4.2 Checking infinite cell edges

During the cell-expansion process, if the current expanding site has an unbounded Voronoi
cell, we check all of its infinite cell edges to detect their potential intersections with infinite
edges not belonging to the expanding cell.

In Fig. 4.6(a), consider infinite cell edge e1. As the input site C1 expands, e1 moves
towards its neighboring Voronoi cell corresponding to C2 and potentially intersects with
another infinite edge e3. Edges e2 and e3 are shared by sites C1-C2, and C2-C3, respectively.
If they intersect, there must be a new circumcircle generated by C1, C2, and C3. Applying
the method described in [31] (or [32] for ellipses), we find circumcircles from sites C2, C3, and
the expanded C1. As illustrated in Fig. 4.6(b), in this case, the newly generated circumcircle
is detected from the calculation. From the existence of the new circumcircle, we confirm
the intersection of e1 and e2, and then update the geometry and topology of the Voronoi
diagram (Fig. 4.6(c)).

A disconnected edge is a special infinite edge both of whose ends extend to infinity.
Following the process described above, we check for newly generated vertices at each of its
ends. As shown in Fig. 4.7, new vertices may be generated at both of a disconnected edge’s
ends.
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(a)

(c)
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Figure 4.6: An expanding unbounded Voronoi cell with infinite cell edges. (a) Before expan-
sion, (b) a newly generated circumcircle exists, (c) after expansion, with a new generated
vertex v2 and edge e4.

4.4.3 Tracing cell vertices along radiating edges

For each special input, after checking its infinite cell edges and updating the topology and
vertex geometry accordingly, we obtain an updated list of its cell vertices. When a Voronoi
cell expands, each of its cell vertices moves outward along its corresponding radiating edge
because the vertex must remain equidistant from the two sites generating the radiating edge.
In this second step of the cell expansion process, we trace each of the non-infinite cell vertices
along its radiating edge, detecting potential topology changes. We consider two cases.
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Figure 4.7: Disconnected edges in the cell-expansion process

Radiating edge extends to a neighbor vertex

For each cell vertex we are tracing, if its radiating edge extends to a neighbor vertex, the
cell vertex might collide with this neighbor vertex.

See Fig. 4.8(a). Assume we are analyzing cell vertex v1 of the expanding site C1. As site
C1 expands, v1 moves along its radiating edge e1 towards neighbor vertex v2 (see Fig. 4.8(b)).
No topology changes occur until v1 collides with v2. At the collision point, vertices v1 and
v2 merge into a single cell vertex and radiating edge e1 disappears (see Fig. 4.8(c)). After
the collision, the new cell vertex splits into two cell vertices, which move along each of the
newly adjacent radiating edges, generating a new cell edge e2 (see Fig. 4.8(d)). This process
is called edge flipping because it locally flips an old Voronoi edge (e1) to a new one (e2), with
no other topology changes elsewhere.

We can perform a simple check for the collision between cell vertices and correspond-
ing neighboring vertices by checking if the expanding site collides with the corresponding
circumcircle of the neighbor vertex. In Fig. 4.8, neighbor vertex v2 is the center of the
circumcircle of its three corresponding sites C2, C3, and C4. There is no topology change
when the expanding site C1 does not intersect the circumcircle (see Fig. 4.8(b)); two vertices
degenerate to one when C1 is tangent to the circumcircle (see Fig. 4.8(c), and an edge flip
operation is needed when C1 overlaps the circumcircle (See Fig. 4.8(d)).

Fig. 4.9 shows a special case where the neighbor vertex is in non-general position (i.e.
the vertex is shared by more than three sites). In this case, after the cell vertex collides with
this neighbor vertex, new cell vertices are generated on each of the radiating edges from the
original neighbor vertex, and new cell edges are generated between these vertices, proceeding
in clockwise or counter-clockwise order.
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Figure 4.8: During expansion of a special site (red), the cell vertex v1 collides with neighbor
vertex v2, causing a topology change.

After each of the topology change events described above, new vertices are generated.
We iteratively check each newly generated vertex along its radiating edge, until no further
topology changes occur.

Radiating edge extends to infinity

See Fig.4.10. When a cell vertex v1 has a radiating edge e1 that extends to infinity, it moves
along this radiating edge. During the expansion of the corresponding cell, the vertex v1 may
disappear at a critical point. At the critical point, the original radiating edge e1 disappears
along with the cell vertex v1, and instead the two cell edges connected to this cell vertex (e2
and e3) become infinite at this end (see Fig. 4.10).

We detect this topology change by calculating the circumcircle of the expanding cell
vertex’s corresponding input sites. If the circumcircle exists, the vertex is still moving along
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(a) (b) (c)

Figure 4.9: A special case: a neighbor vertex in non-general position.
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Figure 4.10: During the cell-expansion process, a cell vertex vanishes when its radiating edge
extends to infinity

the radiating edge, and no topology change occurs (see Fig. 4.10(a)); the critical point occurs
when all three corresponding inputs are tangent to a line (see Fig. 4.10(b)). Starting from
this critical point, no circumcircles exist for the corresponding inputs, and the topology of
the Voronoi diagram must be updated (see Fig. 4.10(b)(c)).

4.4.4 Overall cell-expansion process

Fig. 4.11 summarize of our cell-expansion process. The input is the ordinary Voronoi dia-
gram, which is then processed in two levels of iteration in our method. We iterate over the
special sites to expand their corresponding Voronoi cells. For each expanding cell, we first
check for topology changes in its infinite edges and then perform another level of iteration to
detect other topology changes by tracing each cell vertex along its corresponding radiating



CHAPTER 4. DEFECT DETECTION FROM MICROSCOPE IMAGES: VORONOI
APPROACH 34

for each special site

Check infinite 
edges 

Includes 
infinite
edges?

Input

Input

Disconnected 
edge?

Extends to infinity

Yes

No

Status of its 
radiating 
edge(s)

for each Voronoi vertex

Extends to another vertex

Section 5.1

Check potential 
vertex 

disappearance

Section 5.2.2

Do two 
vertices 
collide?

Flip edges, update 
topology and 

vertex geometry

Yes

No

Update vertex 
geometry only

Section 5.2.1

Section 5.2.1

New vertices generated

No topology 
change

Need topology 
change

Potential 
topology change

Iteration process 
(for-loop)

Process 
direction

Input: data structure of the ordinary 
Voronoi diagram and a list of the 
special sites to be expanded

Figure 4.11: Summary of the cell-expansion process

edge(s).
During the process, we gradually update the topology and vertex geometry of the input

Voronoi diagram until all special sites have been expanded. We do not calculate the curved
edge geometry because it is not used in computing the α-shape in subsequent steps.

The cell expansion method works for both circle and ellipse inputs. Detecting topology
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changes is based on detecting the intersections between the expanding object and each of
the corresponding circumcircles formed by its neighboring vertices.

4.5 Construction of the α-shape

4.5.1 Determining the refined region

After calculating the Voronoi diagram, we directly obtain the dual triangulation. As Fig. 4.14(a)
shows, at the boundary of the dual triangulation, skinny triangles can occur. In a later step
of constructing the α-shape (Section 4.5.3), we will determine if the α probe can be placed
in a dual triangulation cell by comparing the size of its corresponding circumcircle with the
α value. In that step, such a boundary skinny cell will be falsely detected as a resin-rich
area because the size of its circumcircle does not indicate the actual size of the empty space
between the three corresponding input objects. To avoid this miscalculation, we must cull
these boundary-artifact skinny cells from the dual triangulation. After this culling process,
we determine “resin-rich areas” on the remaining dual triangulation area (see Section 4.5.3).

In the dual triangulation, for any triangle having at least one edge at the boundary, we
determine if it is a boundary-artifact triangle by checking if its corresponding circumcircle
entirely stays outside this triangle. If so, the size of the circumcircle depends more on
the boundary geometry than the actual empty space of the boundary-artifact triangle (see
Fig.4.12). We then cull all such boundary-artifact cells from the dual triangulation. We call
the remaining part of the dual triangulation the refined dual triangulation (see Fig. 4.14(b)),
and its corresponding region the refined region. The region outside the refined region is the
boundary region (Fig. 4.14(c)), which is not considered in the following process.

Another potential way to handle Voronoi vertices outside the image is to compute all the
intersection points of the Voronoi edges with the boundary of the image, and treat those
intersection points as if they were Voronoi vertices for the purpose of identifying resin-rich
areas: we would test whether circular probes centered at those boundary points intersect
any fibers or not. We would still discard Voronoi vertices outside the image.

4.5.2 Determining the threshold for α values

In the microscope image, if all fibers are evenly distributed, there can be no resin-rich areas.
See Fig. 4.13(a). In this optimal situation, the fibers are evenly distributed in a hexagonal
lattice, with the plane tiled by a triangular pattern with vertices located at the centers of the
three neighboring fiber cross-sections. The largest possible probe (with radius αthresh) that
can be placed into this pattern is the circle centered at the center of the triangle, tangent to
all of the three fiber cross-sections (see Fig. 4.13(b)). Any geometry change to the fibers will
cause what could be considered resin-rich areas, where probes with radii larger than αthresh

can be inserted. Thus only probes with radii larger than the threshold probe size (αthresh)
could indicate resin-rich areas.
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“Skinny” 
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be culled
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Figure 4.12: Boundary-artifact triangles and their corresponding circumcircles.
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Figure 4.13: Geometric relation between the threshold α value αthresh and the radius of the
fiber cross-sections R.

This (αthresh) is thus a function of the fiber volume fraction vf (the ratio of the volume
of fibers to the total volume) as well as the fiber radius R. Analyzing the tiled triangular
geometry (see Fig. 4.13(b)) to find the ratio of the fiber cross-section areas to the whole
cross-section area in this ideal case, we set it equal to the actual vf for the manufacturing
process and solve for αthresh. Letting ` denote the side length of the equilateral triangle, we
have:

vf =
πR2

sin(60°)`2
. (4.1)
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For any equilateral triangle, the distance of its center from its vertices satisfies:

R + αthresh =

√
3

3
` . (4.2)

Substituting for ` in Eq. 4.2 by an expression in terms of R and vf from Eq. 4.1, we can
derive the following relation:

αthresh =

(√
3

3

√
π

sin(60°)vf
− 1

)
R . (4.3)

From the above equation, if the printed composite has, for example, nominal fiber volume
fractions of 50%, 60%, or 70%, the threshold α value αthresh is 0.555R, 0.420R, or 0.314R
respectively. Choice of αthresh in different applications is further discussed in Section 4.6.

4.5.3 Constructing the α-shape in the refined region

In [29], Kim et al. described a process for constructing the α-complex from the dual triangu-
lation of circle inputs. We extend this idea to construct the α-complex of circles and ellipses
from their refined dual triangulation. The process is has two parts.

Firstly, for each edge in the refined dual triangulation, we check if the probe can traverse
it by comparing the probe’s diameter (2α) with the shortest length between the edge’s
corresponding objects (see Fig. 4.15). For a dual triangulation edge between circles, the
shortest length equals the edge length (distance between circle centers) minus the radii of
the two corresponding circles; for a dual triangulation edge between an ellipse and another
circle or ellipse, the shortest length no longer has a simple relation to its edge length. We
apply the method proposed by Zheng et al. [54] to calculate the shortest distance between
two arbitrary ellipses, or a circle and an arbitrary ellipse. If the edge’s corresponding shortest
length is greater than 2α, the probe is able to freely traverse such an edge without colliding
with either of the objects, so we keep this edge in the α-complex; if not, the probe is unable
to traverse the edge, so we remove it from the α-complex.

Secondly, for each cell in the refined dual triangulation (connecting a triplet of circle
centers), we check if the probe can be placed into it by comparing the diameter of the cell’s
corresponding circumcircle with 2α. This is the circumcircle we calculated when construct-
ing the Voronoi diagram, the largest circle that can possibly be placed between the three
corresponding inputs (see Figures 2.1 and 2.3). If the circumcircle’s diameter is smaller than
2α, the probe can not be placed in this cell, and we keep this dual triangulation cell in the
α-complex; otherwise, the probe can be placed in the cell, and we remove the cell from the
α-complex.

The α-complex (Fig. 4.14(d)) is a subset of the dual triangulation; it may contain dangling
edges and interior voids. The above processes for checking edges and cells are separate:
removing a cell does not necessarily mean its three corresponding edges will also be removed
from the α-complex.
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Probe size

(a) (b)

(c) (d)

(e) (f)

Boundary 
region

Figure 4.14: Determining resin-rich areas from the dual triangulation. (a) dual triangulation,
with boundary-artifact cells rendered in red, (b) refined dual triangulation, (c) boundary
region, which is the complement region of the refined dual triangulation, (d) α-complex, (e)
α-shape, (f) detected resin-rich areas.

From the α-complex, we merge all neighboring cells, and remove the edges between
merged cells. The new structure is the α-shape (see Fig. 4.14(e)), indicating areas within
which fibers are sufficiently dense that no probes could be placed there.

To find the resin-rich areas, in the refined region, we take the complement of the α-shape.
If a complementary area is fully divided by the dangling edges in the α-shape, we treat its
sub-areas as separate resin-rich areas (see Fig. 4.14(f)). It is necessary to distinguish such
sub-areas because they do not form a fully connected region in which fibers are deficient.
For example, see Fig. 4.16: although fibers are deficient inside each of the two detected sub-
areas, there are enough closely spaced fibers at the boundary where they meet to increase its
local strength. Since the resin-rich areas are not continuous across their locally reinforced
contacting boundary, considering them as separate sub-areas helps in subsequent quality
analysis and failure prediction processes.
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Figure 4.15: The shortest length between: (a) two circles; (b) two ellipses.

(a) (b)

Figure 4.16: An example of the resin-rich area divided by a dangling edge: (a) α-shape; (b)
two detected resin-rich areas.

4.6 Results

We have tested our algorithm on real-world microscope images from 3D printed FRP parts.
Each cross-sectional microscope image usually contains 100,000 to 1,000,000 fiber cross-
sections. In our images, the mode of the radii of fiber cross-sections is around 7 pixels.
Because of the inherent variability in microscopy and circle/ellipse detection processes, it
is common to have a ±1 pixel deviation in the detected circle radii or ellipse minor axes
(for a misaligned fiber, the minor axis appearing in its cross-section equals the original fiber
radius). Therefore we use ±15 % (±d1/7e) as our acceptable tolerance: if a fiber cross-section
does not deviate by more than 15 % from the mode of the detected radii Rmode, we consider
it to have radius Rmode just like most other fiber cross-sections.

The proportion of expanded and misaligned fibers is highly dependent on the quality
of the 3D printing process: poorer manufacturing leads to more expanded and misaligned
fibers. In our test images, we found that no more than 1% of the fiber cross sections were
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Figure 4.17: Experimental results of three real-world microscope images. Separate detected
areas are distinguished with different colors; grayed out areas are boundary regions.

larger size (expanded) circles (radii > 1.15Rmode) and no more than 0.008% were ellipses.
No shrunken fibers (radii < 0.85Rmode) were found. However, in the circle/ellipse detection,
it is possible that broken fibers will appear as small-radius shrunken fibers. In that case, we
can just treat them as absent because the strength of the broken fibers are mostly lost; the
areas where they appear remain “resin-rich.”

Our algorithm robustly handled all the 30 real-world examples we tested, whether the
fibers are circles or ellipses, in general position or not (see Fig. 4.17 and 4.18). To better
demonstrate our results, in Fig. 4.17, we show our implementations on small cropped portions
of microscope images with different levels of ellipse content ratio. The probe radius α is
defined as the mode of the radius of the detected fibers (α = Rmode) in each test case.

Different choices of α result in different detected areas (see Fig. 4.18). Higher α values
keep significant fiber-deficient areas and ignore tiny ones, useful when we only need to locate
large defects such as inter-layer or inter-strip fiber-deficient areas. Lower α detects both
significant and tiny fiber-deficient areas, which is preferred when we want to compile thorough
statistics of fiber distribution in the part. For high-quality industrial FRP composite parts
(typically 50%–70% nominal fiber volume fraction), depending on the application, α values
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ranging from Rmode to 3Rmode provide good inspection results.

Probe size

Detected areas

Probe sizeProbe size

79 detected areas
31 detected areas

Figure 4.18: Effect of changing α. Left: 79 detected fiber-deficient areas when α = 2Rmode.
Right: 31 detected areas when α = 2.5Rmode.

To perform a complexity analysis, let n be the number of input sites (detected fiber cross-
sections, including expanded and misaligned ones). It takes O(n log n) time and to construct
the ordinary Voronoi diagram of points and thus of the centers of detected fiber cross-sections.
The cell expansion process of each large circle or ellipse takes time linear in the number of
neighboring sites of the expanded cell. Since there might be (n−1) large circles and ellipses,
and each expanded cell may interact with all the other (n − 1) sites, the cell-expansion
process takes O(n2) time in the worst case. In most cases, the cell-expansion process takes
O(n) time because in general Voronoi cells have few, O(1), neighboring sites. Constructing
the dual triangulation from the Voronoi diagram only takes O(1) time because the dual is
already captured in the Triangle software’s data structure. From the dual triangulation, we
compare the size / shape of each of the O(n) edges and cells to the size of the α-probe, and
preserve those that are not traversable by the α-probe as the α-shape. Therefore, the total
time complexity of our algorithm is O(n log n) for typical real-world inputs, even if O(n2) in
the worst case.

We have implemented our algorithm in C++, and tested our code on a PC with an
Intel Core i7-9700K CPU with 16GB RAM. To test the efficiency of our implementation, we
randomly selected real-world microscope images and cropped them to give smaller images
containing different numbers of fibers. Run times (exclusive of the fiber detection process)
for different cropped images are shown in Table 4.1. We can observe that, although the
calculation complexity depends on the number of expanded and misaligned fibers, the run
time is roughly linear with regard to the number of detected fibers in these real-world inputs.
However, when the input includes a large number of misaligned fibers, the algorithm takes
significantly more time, a limitation of our approach.
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Table 4.1: Run time (excluding circle/ellipse detection) for real-world inputs with different
numbers of detected fibers.

Number of
detected fibers

Number of
expanded fibers

Number of
misaligned fibers

Run time
(s)

10,087 85 0 0.25
50,048 40 5 2.17

100,040 92 3 3.12
500,156 1418 20 25.67

1,000,144 4482 144 68.63

Table 4.2: Run time under different number of large circles within input containing 100,040
detected fibers.

Number of large circles Number of ellipses Run time (s)
0 0 2.51

1,000 0 2.77
2,000 0 3.01
5,000 0 3.70

10,000 0 4.76

Table 4.3: Run time with different numbers of ellipses within input containing 100,040
detected fibers.

Number of large circles Number of ellipses Run time (s)
0 0 2.51
0 10 3.84
0 20 4.28
0 50 6.78
0 100 10.94
0 500 53.96

To test the sensitivity of our algorithm to the number of expanded or misaligned fibers,
we artificially increased their content ratios by randomly picking regular detected circles and
reshaping them into large circles or ellipses. For an example with 100,040 detected fibers,
the algorithm’s run time for different numbers of artificially expanded circles and ellipses
are shown in Tables 4.2 and 4.3 respectively. Compared to the number of large circles, the
number of ellipses has more impact on the total run time, due to the more complicated
calculation of circumcircles and shortest distances for ellipses.
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4.7 Conclusions

This chapter presents a novel algorithm to automatically detect resin-rich areas from micro-
scope images of 3D printed FRP parts. It successfully handles real-world microscope images
containing more than 1,000,000 fiber cross sections in 70 seconds, whether the fibers are
aligned or misaligned, in general position or non-general position. We exploit the particular
characteristics of fibers in 3D printed FRP parts in our design to considerably improve the
efficiency over general-purpose geometric construction algorithms. Although the computa-
tion time is sensitive to the unpredictable number of misaligned fibers, in our real-world
examples, it shows a roughly linear relationship to the number of fiber cross sections.

Our algorithm works not only for circles and ellipse, but is also applicable to all convex
shapes. Following the same process, one could extend this algorithm to construct Voronoi
diagrams and α-shapes of other convex shapes by calculating circumcircles and shortest
distances among them.
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Chapter 5

Voronoi Diagram of Spheres

5.1 Introduction

While detecting resin-rich areas using the Voronoi approach (discussed in Chapter 4), note
that the most computationally expensive step is the exact computation of circumcircles in
the construction of Voronoi diagrams, taking about 70% of the total computation time. For
example, for a real-world high-resolution (18,000*10,000 pixels) microscope image containing
about 1.15 million fiber cross-sections, it takes 74.48 seconds for the Voronoi approach to
detect resin-rich areas, in which 52.79 seconds are the exact computation of circumcircles
(and 61.33 seconds for the whole Voronoi construction). Considering this situation, a poten-
tial approach to further increase the efficiency of the resin-rich area detection process is to
use sample-based techniques to construct the Voronoi diagram, which could avoid complex
exact computations.

In Hu et al. [50], we proposed an algorithm to calculate the geometry information of
Voronoi vertices and Voronoi face sample points. The algorithm is a sample-based approach
that calculates sample points on Voronoi faces by taking the lower envelope of the inter-
sections of rays from each base sphere through its corresponding bisectors. It was able to
find Voronoi vertices of both general and non-general position (degenerate-case) inputs by
searching for patterns of neighboring sample points that indicate the presence of Voronoi
vertices and using numerical iteration to calculate the vertex locations.

We would like to test if the resin-rich area detection process could be more efficient by
substituting (the 2D version of) this sample-based Voronoi construction algorithm for our
exact computation (cell expansion) process described in Chapter 4. However, this sample-
based algorithm only calculates the geometry information of Voronoi vertices; the Voronoi
edge topology information is not calculated. Without calculating the topology information,
we are not able to integrate this algorithm into our resin-rich area detection process because
the dual triangulation can not be determined.

Thus, in this chapter, we develop a follow-on algorithm to calculate Voronoi edges un-
der both general or non-general input positions (including disconnected Voronoi edges and



CHAPTER 5. VORONOI DIAGRAM OF SPHERES 45

degenerate cases). Combining our output with the prior geometry output from [50], we
show how to build the full Voronoi diagram for 3D spheres with inputs under any condition
(Fig. 5.1). We also test the efficiency of our resin-rich area detection process by applying
the 2D version of this sample-based method in the Voronoi construction step.

(a) (b) (c)

Input 
Spheres:

Face Sample 
Points:

Voronoi
Edges:

⨀

⨂

⨀

⨂

Figure 5.1: Example results showing correctly identified 8 Voronoi edge topology for chal-
lenging special cases (all figures are 2D rendering of 3D scenes): (a) A self-connected ring-
shaped Voronoi edge is identified (the centers of these three input spheres lie on the same
line); (b) Four infinite Voronoi edges (both ends extending to infinity) are identified for this
case where the centers of the five input spheres lie on the same plane; (c) An infinite Voronoi
edge (with both ends extending to infinity) is identified for this case where the centers of
six input spheres lie on the same plane. The Voronoi edge passes through the center of the
ring of six spheres and is perpendicular to their plane. Symbol “

⊙
” represents Voronoi edge

shooting outwards to infinity (coming towards the reader); symbol “
⊗

” represents Voronoi
edge shooting inwards to infinity (away from the reader).
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5.2 Terminology and definitions

Following [55], the Voronoi diagram for a set of spheres in 3-dimensional space is defined as:
Definition 1: Given a set of spheres S0, S1, . . . , Sn in R3, the Voronoi cell (VC) of sphere

Si, denoted the “base sphere,” is the set of all points closer to Si than to Sj,∀j 6= i. The
Voronoi diagram (VD) is then the union of the Voronoi cells of all (n+1) spheres.

The distance between a point P = (x, y, z) and a sphere S with center (Cx, Cy, Cz) and
radius R is defined by the equation:

dist(P, S) =
√

(x− Cx)2 + (y − Cy)2 + (z − Cz)2 −R. (5.1)

Definition 2: The union of all points that are equidistant from spheres Si and Sj is
called the bisector Bi,j of the two spheres. Si, Sj are called the generating spheres of the
bisector Bi,j.

Any point P = (x, y, z) located on the bisector surface between two spheres S1 (center
(Cx1 , Cy1 , Cz1) and radius R1) and S2 (center (Cx2 , Cy2 , Cz2) and radius R2) satisfies the
following equation: √

(x− Cx1)
2 + (y − Cy1)

2 + (z − Cz1)
2 −R1

=
√

(x− Cx2)
2 + (y − Cy2)

2 + (z − Cz2)
2 −R2.

(5.2)

The bisector is a plane for two generating spheres with the same radii; for two generating
spheres with different radii the bisector is a hyperbolic surface [50, 56]. A Voronoi face is
the subset of a bisector that is closer to its generating spheres than to any other spheres.

Within a Voronoi cell, Voronoi edges are the intersection between two of its Voronoi faces.
In general, Voronoi vertices are the intersection among three Voronoi faces; such a vertex is
determined by the four spheres to which it is equidistant (the base sphere and three other
spheres corresponding to each of the Voronoi faces).

A base sphere is a generating sphere of a Voronoi face/edge/vertex if such a Voronoi
face/edge/vertex appears in the Voronoi cell corresponding to the base sphere. Typically,
a Voronoi face/edge/vertex has 2/3/4 generating spheres, respectively. If there are more
generating spheres than this general case, they are said to be not in “general position.”

5.3 Prior algorithm to calculate Voronoi vertices
We briefly summarize our prior algorithm [50] as follows:

1. Determine the implicit quadratic surface equations, derived from Eqn. 5.2, for the
bisectors between the base sphere and all the other input spheres (input spheres can
intersect but not completely contain another sphere).

2. From each base sphere, the algorithm creates an axis-aligned bounding cube, and
uniformly subdivides each of the six faces to a parameterized domain expressed in
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variables u and v (Fig. 5.2). From the center of the base sphere, the algorithm shoots
sampling rays through each (u, v) sample point on the bounding-box surface into space.

Figure 5.2: Mapping sphere to six u-v parametric surfaces on the bounding cube; uniform
parametric sampling of top surface shown [50].

3. Compute the intersection of each base sphere ray with all the corresponding bisectors,
and take the lower envelope of all the intersections (i.e. only keep the nearest intersec-
tion for each ray) to obtain the sample points on the Voronoi faces of the Voronoi cell
for this base sphere.

4. The algorithm color-codes each sample point of the Voronoi cell for the base sphere on
the u-v parametric domain based on its corresponding bisector found in step 3. It uses
a marching approach to locate the neighborhood of Voronoi vertices by checking each
group of four neighboring sample points on the bounding cube, called a “grid-cell.”
Each 3-color and 4-color grid-cell indicates the appearance of three or more Voronoi
faces in this neighborhood. Recall that Voronoi vertices are the intersection among
three Voronoi faces in general, so 3-color and 4-color grid-cells indicate the existence
of Voronoi vertices.

Fig. 5.3 shows the correspondence between sample points in geometric space and the
u-v parametric domain.

5. For each 3-color grid-cell, take the average of the location in 3D space of the face
sample points as the starting point for iteration, then use the Newton-Raphson method
to find the actual vertex location (within a user-defined tolerance) that satisfies the
three corresponding implicit bisector equations.
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(a) (b) (c)

Figure 5.3: (a) Sample points on Voronoi faces for white base sphere with four spheres of the
same size evenly spaced around it, all five with co-planar centers; (b) corresponding color
map of u-v domains on bounding cube with gray representing sample rays that go to infinity;
(c) sample point grid on one face of the bounding cube with 3-color grid-cells indicated by
boxes [50].

If the sampling density is insufficient, special cases of singular Jacobian and 4-color
grid-cells would occur, indicating that Voronoi vertices cannot be calculated in those
grid-cells. The algorithm uniformly subdivides such grid-cells into four new sub-grid-
cells, repeating steps 1-5 for the newly generated u-v points. New sub-cells shoot
additional sample rays to the 3D space neighborhood corresponding to the original
grid-cell, increasing the local sampling density to provide more information to calculate
the Voronoi vertices.

6. The algorithm combines the results of the Voronoi cell calculated for each base sphere
to form the full Voronoi diagram. Because each Voronoi vertex has multiple generat-
ing spheres (four for general position or more for non-general position), it should be
found from all of the Voronoi cells corresponding to the generating spheres. When
the sampling density is insufficient, some Voronoi vertices may not be found from all
the Voronoi cells. For such “incompletely matched” vertices, from each corresponding
base sphere whose Voronoi cell did not find it, the algorithm shoots a new ray from
the center of the base sphere to the exact location of this point (the exact location
calculated from the other Voronoi cells that found it). The intersection of this ray
with the bounding-box surface is the corresponding u-v location of the vertex. Around
this vertex’s u-v location, the algorithm constructs a much smaller grid-cell (Fig. 5.4),
repeating steps 1-5 for the four newly generated u-v points of the smaller grid-cell.
After this targeted sampling around the vertex, the tiny grid-cell will typically have
the 3-color patterns corresponding to its generating spheres.

Please refer to [50] for complete details of the prior algorithm.
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Figure 5.4: Construction of the new tiny grid-cell [50].

5.4 Updates in the construction of geometry

information

In this section, we revisit some implementation details for the prior algorithm summarized
above. We turn the process of creating tiny grid-cells of incompletely matched vertices into
an iterative searching process (section 5.4.1), improving the robustness of the prior algorithm
and establishing the relationship between the tiny grid-cell and its containing grid-cell. On
the u-v domain, we track the neighboring information between grid-cells by adding pointers
in the data structure, and update the information (pointers) during subdivision and the
iterative searching process (section 5.4.2).

5.4.1 Iterative search for incompletely matched vertices

In step 6 of the prior algorithm, tiny grid-cells are created to check if the vertex actually
exists in the Voronoi cells that did not find it [50]. If the tiny grid-cell is a 3-color or 4-color
grid-cell, and its colors are consistent with those in the other cells that initiated the targeted
search (Fig. 5.5(a)), the vertex exists. (Note that for a non-general position Voronoi vertex
that has more than four corresponding colors (contributing spheres), if the three or four
colors from the tiny grid-cell are a subset of those corresponding colors, it is also considered
consistent with other contributing spheres.) If the colors are not consistent, the algorithm
will recursively create even smaller grid-cells using the same reduction ratio, until a consistent
3-color or 4-color grid-cell is found or reaching a maximum depth of recursion.

The prior algorithm only calculated the Voronoi vertices’ geometry, not their connectivity
via Voronoi edges. To calculate the latter, we need to connect each of the four sample points
on the tiny grid-cell to each of the corresponding four sample points on its original containing
grid-cell. For example, as shown in Fig. 5.5(b), the blue sample point on the bottom-right
corner of the tiny grid-cell is connected to the blue sample point on the bottom right corner
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Figure 5.5: One iteration in the iterative search process for incompletely matched vertices.

of the original grid-cell.
By this process, we will create four new grid-cells (in addition to the tiny grid-cell). If

any of these new grid-cells is 3-color or 4-color, it corresponds to a new vertex that has not
been found in this Voronoi cell before (Fig. 5.5(c)). We calculate the position of this new
vertex using numerical iteration and check that it appears in the Voronoi cells all of its other
generating spheres (corresponding to the 3 colors of the grid-cell). If it is missing for any of
the generating spheres, we repeat this process for this new incompletely matched vertex (in
the u-v domain of any generating sphere that does not yet contain it in its Voronoi cell).

We repeat this process for each new incompletely matched vertex, until no more such
vertices are found.

5.4.2 Create neighboring information of grid-cells

Just as in the u-v domain we call each group of four neighboring face sample points a
“grid-cell,” similarly we call each pair of neighboring face sample points a “grid-side.” Each
grid-cell has four grid-sides initially (if neighboring cells are subdivided, its sides will also
be split whenever a new sample point is introduced in the middle of a side). A grid-side
connecting a pair of sample points of the same color is called a homogeneous grid-side; a
grid-side connecting a pair of sample points of different colors is called a heterogeneous grid-
side. Each grid-side has two neighboring grid-cells that both contain this grid-side. If it is
on the edge of the bounding cube, it is shared by two grid-cells on different u-v parametric
surfaces (Fig. 5.6); these grid-cells are still neighbors because of sharing the same grid-side.
Having this kind of neighborhood relationship allows traversing between different parametric
surfaces on the same bounding cube. In the subdivision process, we may divide an original
grid-cell into four sub-grid-cells (e.g. sub-grid-cells (6, 7, 8, and 9) in Fig. 5.7). We use sub-
grid-cell 6 as an example; it shares small grid-sides e1 and e2 with original grid-cell 1 and 5
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Figure 5.6: Color map on a bounding cube (sampling density 5*5).

respectively. In such situations, we still describe them as neighboring grid-cells: grid-cells 1
and 6 are neighbors by edge e1, and grid-cells 5 and 6 are neighbors by edge e2. Grid-cell
1 has five neighboring grid-cells (2, 3, 4, 6, and 7); Sub-grid-cell 6 has four neighboring
grid-cells (1, 5, 7, and 9). As shown in Fig. 5.8, in the case of iterative targeted sampling,
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Figure 5.7: Neighboring information after subdivision.

we create a tiny grid-cell (6) around the u-v domain location of the vertex. By connecting
the four corner points of the tiny grid-cell to the corresponding four corner points of the
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original grid-cell, grid-cells (7, 8, 9, and 10) are created. Their neighboring information is
still determined by shared edges.
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Figure 5.8: Neighboring information after targeted search.

5.5 Construction of edge topology information

In the previous sections, we described how to obtain the exact locations of the Voronoi
vertices and their corresponding u-v grid-cells from each of the contributing base spheres. To
determine the connectivity among the Voronoi vertices, we detect Voronoi edges by exploring
the connectivity of grid-cells on the colored bounding cubes (u-v parametric surfaces).

Within a Voronoi cell, each Voronoi edge is the intersection between two of its Voronoi
faces, so neighboring pairs of u-v sample points of different colors (heterogeneous sides of
grid-cells) indicate the existence of Voronoi edges in its corresponding neighborhood in 3D
space. Each heterogeneous grid-side indicates the presence of a particular Voronoi edge
generated by the base sphere and two spheres corresponding to the two differently colored
sample points. The pair of colors is called the “edge identifier” of its corresponding Voronoi
edge in this Voronoi cell. For a particular Voronoi edge, we look for heterogeneous grid-sides
with the same edge identifiers. If a grid-cell has two heterogeneous grid-sides with the same
color pair (edge identifier), it indicates this particular edge enters this grid-cell from the
neighboring grid-cell sharing one such side, and exits to the neighboring grid-cell sharing
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the other such side. We call such grid-cells “through-grid-cells” of a particular Voronoi edge
because the edge goes through those grid-cells.

As illustrated in Fig. 5.9, our algorithm premise is straightforward: tracing the paths
of each Voronoi edge by following series of its “through-grid-cells.” (Note that henceforth
we are using the term “edge tracing” in this sample-space context; it has no relation to
the “edge tracing algorithm” of Kim et al.) In a grid-cell containing a Voronoi vertex, each
heterogeneous grid-side represents one particular Voronoi edge that exits into the neighboring
grid-cell that shares this grid-side. Starting from each grid-cell that contains a Voronoi
vertex, we trace the paths of each of its incident Voronoi edges along a sequence of through-
grid-cells connected by grid-sides with the edge identifier associated with that Voronoi edge,
until reaching another grid-cell also searching with the same edge identifier.

Figure 5.9: Voronoi edge topology on bounding cube (sampling density 5*5).

Our algorithm has four stages: preprocessing 2-color grid-cells with particular color pat-
terns (Section 5.5.1), tracing “through grid-cells” on the bounding cube (Section 5.5.2),
searching for isolated Voronoi edges (Section 5.5.3), and sorting of the Voronoi edges (Sec-
tion 5.5.4).

We now describe the steps in detail.

5.5.1 Subdivision preprocessing of 2-color grid-cells

There are three possible configurations (and their inverses) of 2-color grid-cells as shown in
Fig. 5.10.



CHAPTER 5. VORONOI DIAGRAM OF SPHERES 54

(a) (b) (c)

or or

Figure 5.10: Four topological configurations and the corresponding 2-color grid-cells. For
example (c), the color of the middle sample after subdivision will typically disambiguate the
two cases, unless the subdivision gives rise to another case (c), in which case we continue
subdividing those sub-grid-cells.

In configurations (a) and (b), there are two heterogeneous grid-sides. When tracing the
Voronoi edges, if the edge being traced enters this grid-cell from one of the heterogeneous
grid-sides, it will exit on the other heterogeneous side to the next neighboring grid-cell.

When the sampling density is insufficient, we might have configuration (c). Just as for
Marching Cubes [57], there is insufficient information to determine the topology inside this
grid-cell. We use the same uniform subdivision as in Section 5.3 step 5 to subdivide this
grid-cell into four sub-cells, and get five new colored u-v sample points. If the four sub-grid-
cells are all configuration (a) or (b), we can determine the Voronoi edge trajectory inside
them. If any of the sub-grid-cell is still in configuration (c), we continue subdividing until
no grid-cells have such a configuration, or a maximum depth of recursion is met.

5.5.2 Tracing Voronoi edges via “through-grid-cells”

After preprocessing all the 2-color grid-cells to configuration (a) and (b), all the grid-cells are
ready for our edge tracing process. For each base sphere, the search for Voronoi edges is based
on the colors of the u-v sample points on its corresponding bounding cube. Our search starts
at each grid-cell containing a Voronoi vertex. Such grid-cells are at least 3-color grid-cells,
which contain multiple heterogeneous grid-sides with different edge identifiers (color pairs).
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Each such color pair indicates a unique Voronoi edge emanating from the Voronoi vertex
and exiting to the neighboring grid-cell that shares the grid-side with that edge-identifier
(Fig. 5.11(a)). We trace this edge to this next (neighboring) grid-cell. We check if this
new grid-cell is a through-grid-cell for the particular edge we are tracing. If so, we identify
the other (exiting) grid-side with the same edge identifier as the grid-side through which
we entered the grid-cell, and proceed to the corresponding neighboring grid-cell. We keep
tracing the Voronoi edge to its next grid-cell, and repeat the process above (Fig. 5.11(b)).
In each iteration, we check if the new grid-cell is also a “through-grid-cell” of this edge. If
so, we proceed to the neighboring grid-cell sharing the exiting grid-side (with the matching
edge identifier), and mark this grid-cell as “traced” for this particular edge identifier color
pair. In addition to calculating edge geometry sample points in each iteration, we take the
average of the 3D space coordinates corresponding to the two sample points of the exiting
grid-side, and using that average location as our start point, run Newton-Raphson iteration
(similar to Section 5.3 step 5) to find a point on the Voronoi edge in actual 3D space.

(a) Iteration 0 (b) Iteration 3 (c) Iteration 6 (finished)

Figure 5.11: Topology construction process on a u-v surface (sampling density 12*12); stars
indicate the presence of a Voronoi vertex in the grid-cell. Traces from different vertices are
shown with different line styles.

We trace all unique edges from all Voronoi vertices in parallel. Each trace terminates
when either of the following conditions is met:

1. The next “through-grid-cell” of the edge is already marked with the same edge iden-
tifier, which means it has met up with the search from the other end of the same
edge (Fig. 5.11(c)). In this situation, we record the connectivity between the starting
Voronoi vertices corresponding to each path, and combine the 3D sample points we
calculated along the two paths, reversing the order of points from one trace. Thus we
obtain not only the Voronoi edge topology, but also ordered sample point locations on
the edge geometry. These points can be used for visualization or analysis.



CHAPTER 5. VORONOI DIAGRAM OF SPHERES 56

2. The next grid-cell is not a “through-grid-cell” of the edge, and has one or more sample
points at infinity. The existence of sample points at infinity and the absence of an exit-
ing grid-side with the corresponding edge identifier indicates that the Voronoi edge we
are tracing goes to infinity. (Fig. 5.3 shows an example with sample points at infinity.)
In this situation, we terminate the search, and record the topology information and
3D point locations on the edge geometry of this infinite Voronoi edge. This situation
is further discussed in Section 5.5.2.

It is also very rarely the case that the next grid-cell is not a “through-grid-cell” of the
edge but does not go to infinity, in which case it needs to be subdivided to continue tracing
the edge, as discussed in Section 5.5.2.

Finally, we gather all the information from each base sphere. Each Voronoi edge occurs
in the Voronoi cell of at least three base spheres (three for general position, more for non-
general position). The 3D point locations on the edge geometry will be different for each
base sphere’s representation of the same Voronoi edge. Because the choice of 3D points do
not affect the accuracy of topology construction, we randomly keep one group of 3D point
locations for each Voronoi edge.

Some special conditions may bring more complexity into our tracing process. Although
the algorithm we described above is able to handle them, some implementation details should
be emphasized. We discuss such conditions below.

Non-uniform grid-cells

Because of the generation of sub-grid-cells from the subdividing operation (e.g. Section 5.3
step 5) and/or from shooting new rays towards matched vertices from base spheres that did
not initially find them (Section 5.4.1), sometimes we do not have uniform grid-cells on the
parametric bounding cube. Fig. 5.12(a) shows an example of non-uniform grid-cells on a
parametric face that had an original sampling density of 2 by 2 cells and had subsequent
sub-grid-cells added by both of these operations.

In the edge tracing process, just like with uniform grid-cells, we check if the exiting grid-
side (with corresponding edge identifier) exists among all the grid-sides in this non-uniform
grid-cells. If it does, we continue tracing to the next corresponding grid-cell, otherwise
we subdivide this grid-cell and continue the trace through the new generated sub-grid-cells
(details in Section 5.5.2). The updating process in Section 5.4.2 still applies to obtain the
neighboring/grid-side information and construct the edge topology on non-uniform grid-cells
(Fig. 5.12(b)).

It is necessary to be aware, as described in Section 5.4.2, that on these non-uniform
bounding cubes, some grid-cells would have more than 4 neighboring grid-cells. When the
initial sampling density is too low, more non-uniform grid-cells will be generated. Grid-cells
may even have tens of neighbors. Such poor uniformity would damage the efficiency of our
parallel algorithm, so choosing an appropriate initial sampling density is important in the
implementation. We will discuss this more in Section 5.6.
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(b)(a)

Figure 5.12: Edge topology construction process of a non-general u-v parametric face (a)
with an original sampling density 3 by 3. A star indicates the presence of a Voronoi vertex
in the grid-cell. (b) The resulting edge trace topology from the Voronoi vertices is shown
with bold lines.

Infinite sample points

Voronoi edges do not always terminate at Voronoi vertices. Some Voronoi edges extend to
infinity, on one or both ends. We call such Voronoi edges infinite edges.

During our edge tracing process, if the current grid-cell does not have an exiting grid-side
with corresponding edge identifier, and has at least one corner sample point at infinity, this
Voronoi edge extends to infinity in 3D space. In this situation, we will record that this edge
extends to infinity and stop the search.

If a grid-cell contains a sample point at infinity, but still has matched entering and exiting
grid-sides, we should continue tracing the Voronoi edge through the grid-cell neighboring at
the exiting grid-side (Fig. 5.13).

Additional subdivision for topological disambiguation

During the edge tracing process, the trace might enter a grid-cell that does not have a clearly
matched exiting grid-side, yet has no sample points at infinity. This situation happens when
the sampling density is insufficient. There are two cases: the grid-cell has (1) no other grid-
sides with the corresponding edge identifier; or (2) multiple grid-sides with the corresponding
edge identifier.

An example of the first case is shown in Fig. 5.14(a), where the target Voronoi edge is
close to another edge but not intersecting with it. In this example, if we are tracing the
upper Voronoi edge from the right to the left, the edge enters grid-cell 1 from its right grid-
side e. Since there are no other grid-sides with the red-blue edge identifier, grid-cell 1 is
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(a) (b)

Figure 5.13: (a) The tracing path in a grid-cell containing an infinite sample point at in-
finity and a new grid-side to update. (b) The actual color pattern inside the grid-cell (grey
represents infinity).

not a “through-grid-cell”; we need a greater local sampling density in grid-cell 1 to continue
tracking this Voronoi edge.

In this situation, we subdivide the current grid-cell, then continue tracing on the ap-
propriate new sub-grid-cells by checking the color identifier over the two new sub-grid-sides
generated from the previous entering grid-side. In Fig. 5.14(b), we subdivide grid-cell 1,
then continue tracing on sub-grid-cell (1) at a new entering grid-side e1. The same situation
occurs when the trace enters grid-cell 2 and grid-cell 3; we repeat the subdivision process,
iteratively subdividing the two grid-cells when the trace enters each of them, and get the
edge path as shown in Fig. 5.14(c). If necessary, we repeat the subdivision process until all
the grid-cells along this trace are “through-grid-cells,” or a maximum depth of subdivision
is reached.

At the maximum recursion depth, if we still cannot distinguish their respective paths, we
treat the edges as coincident in this neighborhood. In Fig. 5.14(d), assume all the grid-cells
are already at max recursion depth. When tracing to grid-cell 1, no other grid-sides match
either of the blue-red or blue-yellow edge identifiers corresponding to the two entering traces.
Under the local sampling density at the maximum recursion depth, the two edges are still
too close to each other, with no sample point of the color (blue) detected on the exiting
grid-side (the left grid-side of grid-cell 1). In this case, we treat the two edges as coincident
in the neighborhood of grid-cell 1, and trace the exiting yellow-red-(blue) “super edge.” We
keep tracing this super-edge by the yellow-red edge identifier, until the edge identifiers of
both the two individual edges (blue-red and blue-yellow) re-occur (in grid-cell 4). We then
continue each of the individual traces of those two edges.

An example of the second case that requires disambiguation, where the grid-cell has
multiple possible exiting grid-sides with the same edge identifier, is shown in Fig. 5.15. We
subdivide such grid-cells with the same process as the first case, unless it is a 2-color grid-
cell in configuration (c) (Fig. 5.10(c)), and already met the maximum depth of recursion
(Section 5.5.1). To disambiguate the true layout in that case, we will compare the edge
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Figure 5.14: The subdivision operation on grid-cells that are neither “through-grid-cells”
nor contain sample points at infinity.

topology result from two possible layouts to the results from the other Voronoi cells that
share the edge (Section 5.5.4).

Case of u-v deviation

Under insufficient sampling density, there might be two or more Voronoi edges entering a grid-
cell through different grid-sides and exiting through the same grid-side, without intersecting
with each other inside this grid-cell. In such situations, the grid-cell might be 3-color but
has no Voronoi vertices located in its corresponding 3D space neighborhood. An example is
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Figure 5.15: An example of a grid-cell that has more than two grid-sides with the same red-
blue identifier: (a) when the edge tracing enters the middle grid-cell by any of the grid-side
e1, e2, e3, or e4, it will have three other grid-sides with the same (red-blue) edge identifier;
(b) the result of the edge tracing process after the middle grid-cell is subdivided.

shown in Fig. 5.16(a), where two Voronoi edges enter grid-cell 2 through different grid-sides
(the top and the right grid-sides) and both exit through the same grid-side (the left grid-
side). It is a 3-color grid-cell, but the corresponding vertex geometry is not within its u-v
sub-domain. If we were to shoot a ray directly to this Voronoi vertex, it would be in the
u-v sub-domain of grid-cell 1. However, because of missing the red color, grid-cell 1 only has
two colors, indicating no existence of Voronoi vertices in the corresponding 3D space.

We call this situation a “u-v deviation,” because instead of being located in the u-v
sub-domain of a ray to the actual Voronoi vertex geometry (grid-cell 1), the vertex location
“deviates” to a nearby 3-color grid-cell with the correct color codes corresponding to this
Voronoi vertex.

Although we may have such “u-v deviations,” the 3D space geometry and topology
information for such Voronoi vertices are still obtained correctly. Our 3D space geometry
calculation is based on the bisector equations among the generating spheres (Section 5.3 step
5). With the same base sphere and 3-color pattern, starting from a different grid-cell around
the true u-v location only means an offset of the iteration start point; the numerical iteration
still finds the correct 3D geometry of the vertex. For the topology, as shown in Fig. 5.16(b),
the Voronoi edges correctly connect to the corresponding 3-color grid-cell, even though the
grid-cell containing the actual u-v location of the ray to the vertex is the neighboring grid-cell
(1).

In degenerate cases, if a Voronoi vertex is shared by more than three Voronoi edges,
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Figure 5.16: (a) The actual vertex and edge location in the u-v domain. (b) The calculated
vertex and edge location in the u-v domain by our algorithm.

multiple corresponding 3-color grid-cells for the vertex locations will typically exist. In
Fig. 5.17(a), a Voronoi vertex is shared by six Voronoi edges. In the u-v domain, there exists
four 3-color grid-cells containing vertices (Fig. 5.17(b)). In the Voronoi vertex sorting process
(Section 5.3 step 6), we will determine that these four vertex locations correspond to the
same Voronoi vertex because all the calculated vertices have the same 3D space coordinates.

In our edge tracing process, connecting to any of these four 3-color grid-cells is treated
as connecting to this particular Voronoi vertex. The zero-length “Voronoi edges” between
Voronoi vertices in 3-color grid-cells corresponding to the same actual Voronoi vertex, allow
them to be merged when calculating edge topology. As seen in Fig. 5.17, “u-v deviation”
is what allows us to handle such high-order Voronoi vertices. Under non-general position
input, a Voronoi vertex may deviate to multiple corresponding grid-cells on the parametric
bounding box, extending the ability of our algorithm to detect the vertex’s connectivity with
more than four Voronoi edges (even though a non-subdivided grid-cell can at most detect
four Voronoi edges through its four grid-sides).
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Figure 5.17: A high-order Voronoi vertex shared by six Voronoi edges: (a) the actual vertex
and edge location on the u-v domain; (b) the calculated vertex and edge location on the u-v
domain by our algorithm.

5.5.3 Detecting isolated Voronoi edges

After the edge tracing process described in Section 5.5.2, we will have constructed the topol-
ogy of all the Voronoi edges that connect Voronoi vertices.

However, not all Voronoi edges are connected with Voronoi vertices. Two types of isolated
Voronoi edges are disconnected from any of the Voronoi vertices, and we cannot find them
from our general edge tracing process. They are:

1. Infinite Voronoi edges with both ends extending to infinity. An example of this situation
is shown in Fig. 5.18, in which five spheres have their center on the same plane. If
we look at the white sphere’s parametric bounding cube (Fig. 5.18(c)), there are four
Voronoi edges with both of their ends corresponding to grid-cells with infinite sample
points.

2. Self-connected Voronoi edges. As shown in Fig. 5.1(a), this ring-like Voronoi edge does
not have any actual endpoints.

In (Section 5.5.2), starting from each of the Voronoi vertices, we marked all the “through-
grid-cells” with corresponding edge identifiers along each tracing path. After the tracing
process, we check if each “through-grid-cell” has been marked for each distinct edge identifier
of all its grid-sides. If a “through-grid-cell” is unmarked for any of its edge identifiers, this
“through-grid-cell” is related to an isolated Voronoi edge corresponding to the unmarked
edge identifier.

We collect all such unmarked through-grid-cells. First we sort them into different groups
by their unmarked edge identifiers. If an unmarked “through-grid-cell” has multiple edge
identifiers, each edge identifier represents a particular isolated edge; it will be put in all the
corresponding groups. For each group, we randomly choose one of its grid-cells as our starting
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Figure 5.18: An example of inputs generating infinite isolated Voronoi edges (grey represents
infinity).

grid-cell, and start tracing the paths of the edge through the two grid-sides corresponding
to the two edge identifier colors of this through-grid-cell. In each trace, we repeat the same
iteration process as for edge tracing (Section 5.4.1). For the search for each isolated edge,
if the two traces both stop at grid-cells indicating infinity (Section 5.5.2), the Voronoi edge
is an infinite Voronoi edge with both ends extending to infinity. If the two traces meet each
other, the Voronoi edge is a self-connected edge.

5.5.4 Sorting of the Voronoi edges

After calculating all the Voronoi edges (including Voronoi edges connected with vertices or
isolated Voronoi edges) from each Voronoi cell (base sphere), we combine the edge infor-
mation of each individual Voronoi cell to form the whole Voronoi diagram by sorting and
merging the Voronoi edges detected for each base sphere’s Voronoi cell.

A Voronoi edge has at least three contributing spheres (three for general position and
four or more for non-general position), so it will have at least three “edge uses” in the
Voronoi cells for those spheres. Each Voronoi edge use has its own 2-color edge identifier,
and one color code corresponding to the base sphere of its Voronoi cell. We call this unique
Voronoi cell related color code the “cell identifier” of this Voronoi edge use. The color triplet,
indicates the three contributing input spheres of the corresponding Voronoi edge.

We sort all the Voronoi edge uses by these corresponding color triplets and the Voronoi
vertices they connect (typically two, but special cases of self-connected Voronoi edges with
zero or one Voronoi vertices may exist). For each sorting group with the same color triplet
and corresponding Voronoi vertices, if there are three Voronoi edge uses in the group and
each of them has a different cell identifier, the particular Voronoi edge corresponding to this
group exists between the corresponding Voronoi vertices (or infinities), and can be found
in all of its corresponding Voronoi cells. A rare case occurs when two Voronoi edges exist
between the same corresponding pair of Voronoi vertices, and both of them were found in
the same corresponding Voronoi cells (Fig. 5.19). In this case, six Voronoi edge uses are in
one sorting group, and correspond to two distinct Voronoi edges.
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Figure 5.19: An example of two Voronoi edges (e1 and e2) sharing the same three contributing
spheres (the green, cyan, and red spheres) and two Voronoi vertices (v1 and v2) they connect.

By this sorting process, we are able to find all the general-position Voronoi edges, self-
connected Voronoi edges, and infinite Voronoi edges in the Voronoi diagram. However, “high-
order” Voronoi edges shared by more than three cells will remain unmatched, requiring a
second round of sorting.

For any of the Voronoi edge uses not satisfying the conditions in the first sort, we pick one
Voronoi edge use and its color triplet as the first member in its group. Starting from this
triplet, we iteratively search the remaining unmatched Voronoi edge uses for those where
two of the three colors in the triplet match any member triplet colors in the group and
have the same corresponding Voronoi vertices to all the members, adding the corresponding
Voronoi edge use as a new member in this group if so. After the search for the first group,
we repeat this process for any remaining un-grouped Voronoi edge uses, until all of them are
grouped. In each group, if the number of different colors equals to the number of Voronoi edge
uses, and each of them has a different cell identifier, the particular high-order Voronoi edge
corresponding to this group exists between the corresponding Voronoi vertices (or infinities),
and can be found in all of its corresponding Voronoi cells.

After this second round of sorting, the only unmatched Voronoi edge uses should corre-
spond to ambiguous grid-cells at maximum subdivision depth (Section 5.5.2). Such grid-cells
had two possibilities, only one of them is a true Voronoi edge. For such a pair of Voronoi
edge uses corresponding to the same ambiguous grid-cell, if only one of them matches with
unmatched Voronoi edge uses from other Voronoi cells and can be grouped with them in a
consistent Voronoi edge, we are done and stop considering the other possibility. If neither can
be grouped consistently, additional subdivision is needed to disambiguate the corresponding
grid-cell.

After these two rounds of sorting, all the Voronoi edge uses should be grouped into
corresponding Voronoi edges in the Voronoi diagram; otherwise we restart the algorithm,
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increasing the initial sampling density and the maximum recursion depth. Similarly, during
the edge-tracing process, if the maximum depth of recursion is met in any step (Section
5.4.1, 5.5.1, or 5.5.2), we restart the algorithm with a higher initial sampling density and
maximum recursion depth.

5.6 GPU framework
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Figure 5.20: The GPU Framework.

Most steps of our algorithm are implemented on the GPU (Fig. 5.20) using CUDA pro-
gramming to exploit data parallelism. For example, in the edge detecting step, for all paths
we trace (starting from all the vertices on all u-v bounding cubes), we use the same oper-
ation that iteratively finds neighboring grid-cells sharing the same heterogeneous grid-side.
In CUDA, each unit of data is processed on one GPU thread. The method/function being
executed by all the GPU threads in parallel is called a kernel. Table 5.1 summarizes the
kernel and thread information of each step performed on the GPU.

5.7 Results
Our algorithm to compute the whole Voronoi diagram (geometry and topology) was run on
a PC with an Intel® Core™ Processor i7-9700K CPU with 16GB RAM and an NVIDIA
GeForce GTX 1080 Ti graphics card. To test our ability to handle large real-world inputs,
we implemented our algorithm on protein structures from the protein data bank [58], where
protein molecule structures are represented as combinations of atom spheres with different
radii.
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Table 5.1: Thread and kernel information for all steps performed on the GPU. Colors corre-
spond to the timing breakdown of geometry/topology in Fig. 5.21.

Step Per Thread Kernel

Calculate Bisectors
Each input sphere Calculates all the bisectors between

each sphere and all other input spheres
(Section 5.3 Step 1)

Sample Rays
Each ray Samples the rays from all input

spheres (Section 5.3 Step 2)

Take Lower Envelopes
Each ray Calculates the intersections between

each ray and all bisectors, keeping the
intersection point with minimum ray
distance (Section 5.3 Step 3)

Calculate Vertices
Each grid-cell Finds the grid-cells containing Voronoi

vertices and calculate the vertices by
numerical iteration (Section 5.3 Step
4 and 5)

Preprocess 2-color Grid-cells
Each grid-cell Checks if the grid-cell is 2-color and in

configuration (c), and subdivides such
grid-cells to configuration (a) and (b)
(Section 5.5.1 Fig. 5.10)

Detect Edges
Each trace Starting from each grid-cell contain-

ing a Voronoi vertex, for each edge
identifier in such grid-cells, the ker-
nel traces the corresponding Voronoi
edge via “through-grid-cells” (Section
5.5.2)

Detect Isolated Edges
Each trace Starting from a random member of

each group of unmarked “through-
grid-cells” with the same edge identi-
fier, the kernel traces the correspond-
ing isolated Voronoi edge (Sections
5.5.2 & 5.5.3)
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In the implementation of our algorithm, the selection of appropriate sampling density
(the number of u-v samples on each face of bounding cubes) is important for obtaining good
parallelism. If the sampling density is too low, we will not obtain enough information to
find Voronoi vertices, and then in the calculating vertices step, we will need to subdivide
many grid-cells and reconstruct their neighboring information. Subdivisions will damage
the uniformity of the grid-cells, reducing data parallelism, and decreasing the efficiency of
our algorithm. On the other hand, if the sampling density is too high, we obtain too many
sample points that are unnecessary for finding Voronoi vertices and edges (such as sample
points on 1-color grid-cells). To illustrate this trade off, we ran our algorithm on protein
“1crn-PDB” with 327 input spheres and different sampling densities. Table 5.2 shows how
the total number of grid-cells increases along with the increase of sampling density, but
the number of subdivision operations decreases. Total number of grid-cells includes original
grid-cells and sub-grid-cells generated by subdivision and targeted search. Fig. 5.21 shows
how the run time varies with sampling density for the same input. Among all the proteins
tested, sampling density in the range 40*40 to 50*50 provides the lowest total run time.
When the sampling density is lower than 40*40, the steps up to and including calculating
vertices (steps of geometry calculation on GPU) take an extremely long time because of the
lack of parallelism in the subdivision operation. When the sampling density is higher than
50*50, the parallelism of our algorithm is excellent but the increasing number of unnecessary
sample points hurts the run time.

Table 5.2: Number of subdivisions and deepest level of subdivision with different sampling
densities, for protein 1crn-PDB with 327 input atoms. Total number of grid-cells includes
original grid-cells and sub-grid-cells generated by subdivision and targeted search.

Sampling
Density

# of Subdivision
Operations

Total # of
Grid-cells

Deepest Level of
Subdivision

1*1 4,237 15,046 8th

10*10 405 197,945 5th

20*20 195 785,660 4th

40*40 81 3,139,584 3rd

80*80 23 12,556,922 2nd

160*160 3 50,227,212 1st

320*320 0 200,908,800 N/A

On other protein models we tested containing 217 to 4195 spheres, the run times also
indicated that sampling densities from 40*40 to 50*50 were the most efficient (lowest overall
run time).

The total computation time of our algorithm under different input sizes is shown in
Fig. 5.22. When the sampling density is lower (e.g. 10*10 here), the computational efficiency
is inherently dependent on the geometric distribution of the input spheres, which determines
the data parallelism (number of subdivision operations) of our algorithm. When the sampling
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density obviates most subdivision (usually more than 40*40), the computation time increases
roughly linearly with the number of input atoms (spheres).

To test our ability to handle non-general position inputs, we designed example inputs
in three non-general situations: self-connected Voronoi edges, infinite Voronoi edges with
both ends extending to infinity, and high order Voronoi vertices or edges. Our algorithm
successfully handled all the non-general situations; one result from each of situation is shown
in Fig. 5.1.
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Figure 5.21: Run time vs. sampling rate, protein 1crn-PDB with 327 atoms.

For the verification of our experimental results, we implemented a naive brute-force
algorithm for detecting all Voronoi vertices, to serve as ground truth. The algorithm is
based on the fact that a Voronoi vertex always corresponds to a sphere that is tangent to all
of its (four or more) contributing spheres, and does not intersect or contain any other input
sphere.

Therefore, for each combination of four spheres from the input, we calculate their tangent
sphere using the algorithm described by Gavrilova and Rokne [59], and check if the resulting
tangent sphere intersects (tangent not included) or contains any of the other input spheres.
If not, the center of this tangent sphere is a Voronoi vertex. We exhaustively make this check
for all the four-sphere combinations and gather the information of all the calculated Voronoi
vertices.

In our experiments, all of the results produced by our algorithm matched the results from
this brute-force algorithm. Furthermore, in all cases, including large-size inputs from the
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Figure 5.22: Computation time at different sampling densities on protein models: (1) “1al1-
PQR” with 217 atoms; (2)“1crn-PDB” with 327 atoms; (3)“1crn-PQR” with 642 atoms;
(4)“1bh8-PQR” with 2161 atoms; and (5)“1JD0-PDB” with 4195 atoms.

protein data bank (the five shown in Fig. 5.22 and ten other randomly selected proteins)
and the non-general position cases, the Voronoi edge calculation is consistent among all
the Voronoi cells (meaning there are no unmatched Voronoi edge uses after two rounds
of sorting). Futhermore, the same output Voronoi diagram vertices and edge topology is
produced for all sample densities that we tested, even with the coarsest possible initial 1x1
sampling (just the 8 corners of each bounding cube). In the tests, we set the maximum
subdivision depth to 10, and this bound was never met (Table 5.2); in other words, less than
10 levels of subdivision was fine enough to trace all the Voronoi edges.

We apply the 2D version of this algorithm in our resin-rich area detection. After substi-
tuting this method for the previous exact computation (cell expansion) method, for the same
real-world input mentioned in Section 5.1, the computation time of the Voronoi construction
process decreases from 61.33s to 22.69s (the overall resin-rich area detection time decreases
from 74.48s to 37.07s). Both methods accurately calculate Voronoi diagrams and resin-rich
areas.

Another potential sample-based approach to constructing Voronoi diagrams would be to
approximate input circles or ellipses by sampling points on their boundaries [60], constructing
a point-set Voronoi diagram, and merging Voronoi cells corresponding to the same input
circles or ellipses. This method avoids complex exact calculations, but may lead to accuracy
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problems and bring additional complexity to the automatic detection process (e.g. in choosing
the sampling / approximation density).

5.8 Conclusion
We have presented a sample-based algorithm to construct edge topology for Voronoi diagrams
of spheres in R3. It successfully handles input spheres in both general and non-general posi-
tion, including self-connected Voronoi edges, infinite Voronoi edges, and high-order position
inputs. We design a GPU framework to exploit data parallelism, and find the approximate
range of sampling densities to maximize the efficiency of our algorithm.

By integrating the 2D version of this method in our resin-rich area detection, we obtain
the same (accurate) detection result as the exact computation method, and reduce the total
computation time by over 50%. The result verifies that in the resin-rich area detection
process, sample-base geometric processing algorithms are able to achieve the same level of
accuracy as exact computation methods, but with a much shorter computation time.



71

Chapter 6

Defect Detection from Microscope
Images: Distance Transform
Approach

6.1 Introduction

In Chapter 5, by applying a sample-based approach in the Voronoi construction step, we
reduce the computation time of resin-rich area detection by over 50%. However, the compu-
tation of Voronoi diagrams is still the most time-consuming step, taking about 60% of the
implementation time.

In this chapter, we propose a novel sample-based algorithm to automatically identify
resin-rich areas from composite cross-sectional images by utilizing the concept of the α-hull,
bypassing the calculation of Voronoi diagrams. As discussed in Section 2.2, the α-hull is the
close relative of the α-shape, and its complement can be used to characterize the resin-rich
areas (Fig. 6.1). Beyond the Voronoi approach, our new method is not only able to handle
input images containing arbitrary fiber cross-section shapes, but also significantly increases
the computation efficiency, with our design of a new α-hull construction procedure without
utilizing Voronoi diagrams.

Our main contributions include:

• A mathematical approach to precisely define the boundaries of resin-rich areas based
on the concept of α-hulls.

• A robust and efficient method to calculate the α-hull from inputs of arbitrary shapes,
not just point set inputs, via the distance transform and morphological dilation oper-
ation.

• A novel end-to-end algorithm to automatically identify resin-rich areas from composite
cross-sectional images that is:
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α-probe radius: 13 pixels

# of detected RRAs: 27

Avg RRA size: 4489 pixels

RRA size histogram:

Top 3 RRA sizes: 
(1) 31005 pixels
(2) 22050 pixels
(3) 16879 pixels

(a) (b) (c)
200µm

0.694µm/pixel in 
all images

Figure 6.1: An example experimental result of our algorithm: (a) input cross-sectional
image (1423*1623 pixels, a small subsection of the full microscope image; subsection contains
about 15 thousand fiber cross-sections); (b) algorithm output image, resin-rich areas detected
(shown in semi-transparent pink); (c) statistics of detected resin-rich areas (RRAs), please
refer to Section 6.3.2 for more details.

– flexible: handles fiber cross-sections of arbitrary shapes and sizes;

– fast: for high-resolution real-world microscopic images (approximately 18,000*10,000
pixels) with about 1.15 million fiber cross-sections, calculates resin-rich areas in
3.5 seconds. Compared to the Voronoi approach results reported in Chapter 4,
our new proposed approach reduces the computation time by 95.3%.

Voids (or porosities) are also a major defect in FRP composites. Voids that exist within
or attached to resin-rich areas may have originally been resin-rich areas, for example, air
entrapment in the resin-rich areas generated while abrading and/or polishing the microscope
sample surfaces [21]; and regardless, voids are more similar to resin-rich areas than fibers
because both are un-reinforced areas. In this chapter, we define resin-rich areas to include
any voids, but our algorithm implementation is also able to identify and distinguish void
regions if desired.

6.2 Calculation of resin-rich areas

In this section, we describe how our algorithm automatically detects resin-rich areas from
composite cross-sectional images (Fig. 6.2). First, we convert the original input to a binary
image that distinguishes fiber and matrix regions (Section 6.2.1). We treat the fiber pixels
as background pixels to build the distance transform of the binary image (Section 6.2.2).
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(a) (b) (c)

(d) (e) (f)

Probe size

Figure 6.2: Algorithm overview: (a) input microscope image; (b) binarized image; (c) clean
image, noisy pixels are identified (in red) and removed; (d) distance transform applied to
image; (e) free space for the center of the α-probe (in white); (f) detected resin-rich areas
(in semi-transparent pink).

Finally, we construct the complementary areas of the α-hull from the distance transform,
which are our identified resin-rich areas. (Section 6.2.3).

6.2.1 Image binarization

In the input cross-sectional images (Fig. 6.2(a)), we distinguish fiber and matrix regions
by their pixel intensities. Since the fiber pixels usually have much higher pixel intensities
than the matrix pixels, we segment/binarize the image into fiber regions and matrix regions
(Fig. 6.2(b)) using image thresholding techniques.

In our implementation, we use Otsu’s method [41] to segment the input images. Otsu’s
method is a global thresholding method that determines the optimal threshold value by
maximizing inter-class variance. It performs well on high quality images. Since the input
cross-sectional images in our experiments are high resolution microscope images with little
noise, Otsu’s method is suitable for our analysis.

However, if the input images have relatively low quality, such as cross-sectional images
from non-destructive methods (for example, computed tomography), adaptive thresholding
[61] or iterated conditional modes [62] that are designed for thresholding noisy images are
likely to provide better segmentation results than Otsu’s method. If the input images have
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insufficient contrast between the fiber and matrix regions, contrast enhancement techniques
such as [63, 64] can be applied prior to this image binarization step to maintain the effec-
tiveness of the thresholding methods.

6.2.2 Distance transform calculation

After binarization, the image is denoised (Fig. 6.2(c)) because the distance transform is sen-
sitive to noise. There might be two forms of noise in the image: (1) isolated random image
noise and (2) noise representing impurities such as broken fiber debris and unexpected inclu-
sions in the composite. Broken fiber debris and unexpected inclusions are treated as noise
because they are not a substantial source of material strength compared to complete fibers
in continuous FRP composites. Noise pixels are eliminated by removing (fiber or matrix)
regions that have less than a threshold number of connected pixels. In this implementation,
the threshold is set as 15% of the nominal size of fiber cross-sections because the impurity
sizes are relatively small in the test images. This threshold should be tuned according to
impurity sizes in input images.

The nominal size of fiber cross-sections can be determined (or estimated) using one of the
following methods: (1) converting the real nominal size (if available) to pixel units using the
resolution of the microscope; (2) approximating the nominal size by calculating the mode
size of the (circular) fiber cross-sections via circle detection methods such as [45]; or (3)
estimating the nominal size of the fiber cross-sections by manual observation. If the fiber
cross-sections are not circular (for example, kidney shapes), the nominal size is estimated by
calculating the mode size of their minimum enclosing circles.

After removing the noisy pixels, we build the distance transform of the resulting binary
image using the algorithm described in [42] by setting matrix pixels as foreground and fiber
pixels as background (Fig. 6.2(d)).

6.2.3 Construction of α-hull complement

Our mathematical definition of resin-rich areas is the complementary areas of the α-hull, or
in other words, those areas that can be reached by the α-probe. Since the α-probe is a circle
with a fixed radius α, if the α-probe does not collide with any of the fibers (fiber pixels), the
distance between the probe center pixel and its closest fiber pixel must be larger than the
radius α.

In the distance transform, the distance value of each pixel is its distance to the closest
fiber pixel. Pixels with distance values greater than the α value are pixels where the α-probe
center can be located without colliding with the fibers. We call the union of such pixels the
free space for the α-probe centers (Fig. 6.2(e)).

Finally, we implement the morphological dilation operation by setting the free space for
the α-probe centers as the input shape A, and the α-probe as the structuring element B.
A⊕B gives us the union of all the areas covered by the α-probe when its center moves inside
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Figure 6.3: Experimental results of our algorithm. Detected resin-rich areas are shown in
semi-transparent pink.

the free space, thus matching our definition for resin-rich areas. Therefore the regions our
algorithm outputs are the resin-rich areas (Fig. 6.2(f)).

6.3 Experimental results and discussion

As illustrated in Fig. 6.1, 6.3, 6.5, and 6.6, our proposed algorithm robustly detects resin-
rich areas from test images. In this section, the following experimental details and algorithm
implementation are discussed: the source of the data, resin-rich area statistics, α value
choice, algorithm efficiency, and void defect detection.

6.3.1 Data

In our experiments, 30 microscope cross-sectional images from FRP 3D printed parts are
used in order to test the proposed algorithm. The 3D-printed composite parts consist of
Polyether ether ketone (PEEK) matrix and unidirectional continuous carbon fibers with
a nominal diameter of 7 µm, manufactured by Arevo Inc.’s Aqua composite 3D printer
[65] using the direct energy deposition technique. Transverse cross-sectional samples are
taken from representative regions of the 3D-printed parts, and are polished by a Buehler
Ecomet 250 polishing wheel with SiC grinding papers, achieving a surface roughness of 0.05
µm. Test images are created using a high-resolution Keyence VHX6000 digital microscope
(0.7 µm per pixel) on the polished cross-sectional samples. We report the size of the test
images and detected resin-rich areas in pixels, which can be easily converted to the physical
lengths by considering the resolution of the microscope. The test images are roughly 18,000
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* 10,000 pixels and have about 1.15 million fiber cross-sections (see example in Fig. 6.4).
In order to clearly show the fiber cross-sections and the resin-rich areas, most figures have
been cropped to only show small representative portions of the original images. In the test
images, the majority of the fiber cross-sections are circular and close to the nominal size,
but there are also a fair number of ellipses (misaligned fibers) and other arbitrary shapes
(deformed and broken fibers).

Figure 6.4: An example test image (top image: 18,270*10,306 pixels), the details of the fiber
cross-section distributions and resin-rich areas can be better observed by zooming in on local
regions (bottom image).

6.3.2 Resin-rich area statistics

The mathematical definition and calculation of resin-rich areas enables us to further dis-
tinguish each of the discrete resin-rich areas and summarize their statistics. The detected
resin-rich areas from our algorithm (Section 6.2) are represented as a collection of pixels.
As shown in Fig. 6.5(a), each contiguous resin-rich region with connected pixels is identified
as a separate resin-rich area, which does not overlap or connect with other resin-rich areas.



CHAPTER 6. DEFECT DETECTION FROM MICROSCOPE IMAGES: DISTANCE
TRANSFORM APPROACH 77

MATLAB’s Image Processing Toolbox is used to label these different continuous regions from
calculated resin-rich area pixels, and provide their corresponding areas. Using this informa-
tion, resin-rich area statistics are calculated, such as the number of resin-rich areas, average
resin-rich area size, and a histogram of resin-rich area sizes (Fig. 6.1(c)). This method is able
to sort the resin-rich areas by size and visualize the largest ones (Fig. 6.5(b)) as a reference
for users. These statistics and visualizations facilitate better understanding of the resin-
rich areas, and open up the possibility to further explore their quantitative relationships to
material properties.
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Figure 6.5: Discrete resin-rich areas are identified and labelled in different colors using our
method. This method is able to output and visualize: (a) all detected resin-rich areas, or
(b) the largest resin-rich areas (top 5 in this case). The test image is the same as shown in
Fig. 6.1.

6.3.3 Selection of α value

It is critical to choose an appropriate α value because changing the α value changes the
size and shape of the resin-rich areas. As illustrated in Fig. 6.6, a smaller α value means
a smaller α-probe, which is able to freely move into smaller matrix regions and identify
smaller resin-rich areas (Fig. 6.6(b)). When the α value increases, only significant matrix
regions will be identified as resin-rich areas. The number of resin-rich areas decreases but
the average resin-rich area size usually increases. A contiguous resin-rich area as identified
using a small α value might be identified as multiple disconnected resin-rich areas using a
large α value. For example, the middle light green resin-rich area in Fig. 6.6(b) is identified
as multiple resin-rich areas under a larger α value in Fig. 6.6(c) because some narrow regions
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α-probe radius: 10 pixels

# of detected RRAs: 14

Avg RRA size: 7304 pixels

RRA size histogram:

Top 3 RRA sizes: 
(1) 88957 pixels
(2) 8670 pixels
(3) 3241 pixels

α-probe radius: 15 pixels

# of detected RRAs: 7

Avg RRA size: 13382 pixels

RRA size histogram:

Top 3 RRA sizes: 
(1) 78573 pixels
(2) 7151 pixels
(3) 4584 pixels

α-probe radius: 5 pixels

# of detected RRAs: 406

Avg RRA size: 514 pixels

RRA size histogram:

Top 3 RRA sizes: 
(1) 120054 pixels
(2) 3341 pixels
(3) 3303 pixels

(a) (b)

(c) (d)

150µm

Figure 6.6: Changing the α value results in different detected resin-rich areas (RRAs). (a)
input image, the nominal diameter of the fibers is 7 µm (10 pixels); (b) α = 5 pixels (equals
to the nominal radius Rn); (c) α = 10 pixels (2Rn); (d) α = 15 pixels (3Rn). In the figure,
different colors indicate disconnected resin-rich areas.

in the light green resin-rich area are no longer accessible to the larger α-probe. If the α value
is comparatively large, the algorithm will fail to detect narrow resin-rich areas, such as the
resin seams.

The selection of the α value relates to the nominal radius (Rn, in pixels) of the fiber cross-
sections. In our experiments, setting the α value between Rn and 3Rn generally provides
useful resin-rich area detection results. Users are encouraged to select and test α values
according to their research objectives. For example, Ghayoor et al. demonstrated that the
failure strain in high volume fraction materials is sensitive to both large and small resin-rich
areas [10]. For such research, a lower α value such as Rn is recommended to obtain thorough
statistics of both large and small resin-rich areas. If the research aims to detect resin-rich
seams/lines [16], a lower α value (Rn) is able to detect such narrow resin-rich patterns. On
the other hand, if the research focuses on detecting and visualizing major resin-rich areas, a
higher α value (such as 2.5Rn or 3Rn) is recommended.
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6.3.4 Algorithm efficiency

Our algorithm was implemented in MATLAB (version R2020a 9.8.0) and run on a laptop
with an Intel® Core™ Processor i7-8550U CPU with 16GB RAM. In order to understand the
run time of the algorithm with different input image sizes, square-shape testing images were
cropped from the original microscope cross-sectional images. Fig. 6.7 shows the computation
time of the algorithm for different test image sizes ranging from 1,000*1,000 to 10,000*10,000
pixels (α is set to Rn, 5 pixels).

Image Side Length in Pixels (Width/Height)

Figure 6.7: Computation time of the algorithm with different input image sizes. Square-
shape images with sizes from 1000*1000 to 10000*10000 are tested. The α value is set as
the nominal fiber radius Rn (5 pixels).

As shown in Fig. 6.7, all of these test examples are efficiently handled in less than 2
seconds. Consistent with our time complexity analysis (see B for details), the computation
time of the whole algorithm or any of the three primary steps has a quadratic relationship
to the side length (width or height) of the square-shaped test images. Regardless of image
shape, the computation time of our algorithm has a linear relationship to the image area
(width * height), so even for much larger images than those tested, the algorithm will run
quickly. The average computation time on our experimental real-world full-size images (30
images with sizes around 18,000*10,000 pixels) is 3.38 seconds (ranging from 3.18 to 3.61
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seconds). Calculating the distance transform is the most computationally expensive step in
the algorithm, taking about 90% of the total computation time.

6.3.5 Comparison to prior approaches

For comparison, we implemented a Voronoi-based approach to resin-rich area detection [10,
22, 21]. These previous approaches require first determining the centers of fiber cross-
sections; we do so using a more accurate watershed-segmentation based fiber recognition
algorithm [18]. We then construct their Delaunay triangulation (the dual structure of the
Voronoi diagram) and merge large-size triangles (those whose areas exceed a user-defined
threshold) to form the detected resin-rich areas, as described in [10].

Experimental output of the resin-rich area detection on real-world inputs contrasting the
Voronoi-based approach to our method is shown in Fig. 6.8. Compared to the Voronoi-based
approaches, our method has advantages in terms of accuracy, efficiency, and applicability, as
explained below.

Figure 6.8: Experimental outputs of resin-rich area detection by the Voronoi-based approach
and our method. From left to right: input images; Voronoi-based approach with a low
threshold; Voronoi-based approach with a high threshold; our method.

Accuracy: One major shortcoming of using the Voronoi diagram concept to detect resin-
rich areas is that although large-size Voronoi cells do indicate resin-rich areas, the reverse is
not always true: resin-rich areas are not necessarily related to large-size cells in the Voronoi
diagram, which means that small-size cells may also exist in the actual resin-rich areas.
However, in the Voronoi-based approaches, such cells will be mis-classified as non-resin-rich
areas, which leads to a mis-identification of large continuous resin-rich areas as series of
smaller discrete resin-rich areas, regardless of parameter selection (Fig. 6.8 first row). By
comparison, our method is able to accurately identify resin-rich areas in any situation.
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Efficiency: on average, to detect resin-rich areas under each predefined parameter, the
Voronoi-based approach takes 574 seconds per image. In comparison, our method only needs
3.46 seconds on average.

Applicability: Voronoi-based approaches assume equally-sized circular fiber cross-sections,
which limits their applicability since fiber cross-sections can also appear as circles with vary-
ing sizes, ellipses, or even irregular shapes [17, 23, 24]. For example, Ahmadian et al. [17]
state that instead of circular cross-sections of similar size, fibers in FRP composites in auto-
motive applications have elliptical cross-sections whose sizes vary considerably. In compari-
son, our method is able to handle fiber cross-sections of arbitrary shapes and sizes, correctly
calculating their resin-rich areas (Fig. 6.8 second row).

6.3.6 Void defect detection

In FRP composites, voids (or porosities) are also an important type of defect that has
substantial influence on a wide range of material properties [66]. Voids appear as near-
black regions in the FRP cross-sectional images, so they can be distinguished from fiber and
matrix regions based on their pixel intensities. As an additional feature, along with resin-rich
matrix areas, our implementation includes the option to differentiate void regions (Fig. 6.9).
With this option, we modify the image binarization step (Section 6.2.1), applying Otsu’s
thresholding method [41] to automate segmenting input images into three levels (voids, fibers,
and matrix) instead of two levels (fibers and non-fibers). In this three-level thresholding,
Otsu’s method automates determining the threshold values by minimizing the intra-class
variance of the thresholded void, fiber, and matrix pixels. This void detection process takes
an average of an additional 0.45 seconds per input image.

Since the major focus of this research is on the identification and quantification of struc-
turally weak areas, although our implementation is also able to further distinguish void
regions (from matrix resin-rich areas), we do not distinguish between them in other example
figures throughout this paper.

6.4 Conclusions

This chapter presents a novel algorithm to automatically calculate resin-rich areas from
composite cross-sectional images. Resin-rich areas are mathematically defined as the com-
plementary areas of the fiber material’s α-hull, and are efficiently calculated via the distance
transform and morphological dilation operations. Detected resin-rich areas are further sep-
arated into disconnected regions from which a statistical summary can be derived. The
proposed algorithm successfully handles real-world FRP cross-sectional images with fiber
cross-sections of arbitrary shapes and sizes. The computation time of the algorithm has a
linear relationship to the image area. The algorithm is able to calculate resin-rich areas from
high-resolution microscope images (18,000*10,000 pixels), which contain more than 1.15 mil-
lion fiber cross-sections, in less than 3.5 seconds. The detailed quantification and statistical



CHAPTER 6. DEFECT DETECTION FROM MICROSCOPE IMAGES: DISTANCE
TRANSFORM APPROACH 82

Figure 6.9: Input images (left) and void regions detected by our algorithm (right).

analysis of resin-rich areas enabled by this algorithm in turn opens up many future directions
for related research in formulating the relationship between material properties and the sizes,
locations, and morphologies of resin-rich areas.
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Chapter 7

Discussion and Conclusions

7.1 Summary

In this dissertation, efficient and scalable geometric processing algorithms have been pre-
sented to automatically characterize the microstructure of additively manufactured FRP
composites from their transverse microscope images. We validated our algorithms on more
than 30 real-world microscope images that on average contain about 1.15 million fiber cross-
sections. The algorithms successfully calculate the sizes, locations, and breakage of fiber
cross-sections, and identify the resin-rich area defects with high accuracy and efficiency. The
major contributions in this dissertation are:

• We propose the first fiber recognition algorithm that is able to automatically detect
and categorize fiber cross-sections as aligned, misaligned, or broken fibers, from cross-
sectional microscope images of FRP composites.

– We exploit distance-transform-based watershed segmentation to identify individ-
ual fiber cross-sections.

– We introduce a new geometric tool, contour gradient charts (CGC) to identify
broken fibers as well their unbroken contours, for more accurate categorization
and localization of individual fiber cross-sections.

– We validate our algorithm on real-world microscope images from 3D-printed FRP
parts, on which our method is able to correctly identify and categorize more than
99.9% of fibers.

• We design a sample-based algorithm to construct Voronoi diagrams of 2D circles or 3D
spheres.

– The algorithm successfully handles input circles/spheres in both general and non-
general position.
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– We design a GPU framework to exploit data parallelism for efficiency improve-
ment. Compared to the exact computation of Voronoi diagrams, the total run
time of the resin-rich area detection process is reduced by over 50% by integrating
this Voronoi construction algorithm.

• We develop two methods to automatically define and characterize resin-rich areas from
microscope images, based on the concept of α-shape/hull.

– We apply the concept of α-shape/hull to formulate a mathematical definition of
the boundaries of resin-rich areas. To our knowledge, this is the first approach to
quantitatively summarize resin-rich areas.

– We design exact computation and sample-based algorithms to calculate the α-
shape and α-hull, respectively. The overall computation time of the sample-based
algorithm is 3.5 seconds for real-world testing images that contain more than 1.15
million fiber cross-sections on average.

– The rigorous mathematical definition of resin-rich areas and ability to collect
thorough statistics will facilitate better understanding and quantification of the
relationship between resin-rich areas and material properties.

7.2 Comparison between two defect detection

approaches

In Chapter 4 and 6, two methods (Voronoi approach and distance transform approach) are
introduced to mathematically define and calculate resin-rich areas in FRP composites. Al-
though both successfully handle real-world examples and outperform previous approaches,
these two methods utilize different methodologies to calculate the alpha-shape/alpha-hull,
which lead to different advantages and disadvantages. We now compare different character-
istics of the two methods in terms of accuracy, efficiency, and applicability (summarized in
Fig. 7.1).

Accuracy: Both our Voronoi and distance transform approaches are able to robustly
and accurately identify resin-rich areas. However, the Voronoi approach can provide more
meaningful results because during the fiber recognition pre-processing step, broken and mis-
aligned fibers can be distinguished from aligned fibers. This allows users to have the choice
to remove broken and misaligned fibers from consideration in the resin-rich area calculation,
since they are usually considered to be defects in composite materials. In comparison, the
distance transform approach does not distinguish between broken, aligned, and/or misaligned
fibers.

Efficiency: The distance transform approach is more computationally efficient. The
time complexity (as well as the run time) of the distance transform approach is dependent
only on the size of the input image (pixels), regardless of the shapes or sizes of fiber cross-
sections. For example, the algorithm is able to process a high-resolution 18,000*10,000
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 Voronoi Approach Distance Transform 
Approach 

Process 
Fiber Recognition → 

Voronoi → Dual → α-shape 

Image Thresholding → 
Distance Transform → 
Morphology → α-hull 

Space Domain Continuous Discrete 
Accuracy √+ √ 
Efficiency  √ 
Extensibility   

• Composite Laminate √  
• Arbitrary Fiber Shape  √ 
• 3D Extension  √ 

 

Figure 7.1: Comparison between the Voronoi approach and the distance transform approach.

microscope image in 3.5 seconds. In comparison, the Voronoi approach requires 74.5 seconds
(excluding the fiber recognition process) to process the same image because of the time-
consuming computations in continuous space. Moreover, the Voronoi approach is sensitive
to the unpredictable number of misaligned fibers, so the run time may further increase when
more misaligned fibers exist.

Extensibility: Beyond detecting defects of unidirectional FRP materials, the Voronoi
approach is also well-suited for the analysis of other continuous-FRP-based structures such
as laminate structures or woven structures. In these continuous-FRP-based structures,
fibers appear in bundles [21], within which the fiber cross-sections have similar orienta-
tion/ellipticity. The fiber recognition step enables the Voronoi approach to identify these
fiber bundles by clustering fibers with the same orientations, transform each of the identified
fiber bundles to its transverse orientation, and detect its resin-rich areas accordingly. On
the other hand, the distance transform approach is able to analyze FRP composites with
not only circular and elliptical fiber cross-sections, but also arbitrary/irregular fiber cross-
section shapes. The algorithm could also be extended to detect resin-rich areas in 3D space
by utilizing the 3D versions of distance transform and morphological operations (which are
available in MATLAB).

7.3 Future work

In this research, we focus on transverse cross-sectional images of unidirectional continuous
FRP composites. Future work could include extending our methods to other continuous-
FRP-based structures and short-fiber reinforced polymers. As discussed above, for continuous-



CHAPTER 7. DISCUSSION AND CONCLUSIONS 86

FRP-based structures, it is feasible to detect their resin-rich areas by extending the Voronoi
approach with a new bundle recognition step. For short-fiber reinforced polymers, 2D cross-
sectional images do not provide sufficient information for understanding their microstruc-
tures. Extending the current distance transform approach from 2D to 3D, employing 3D
α-hulls, one could then detect resin-rich areas directly on 3D scans of short-fiber reinforced
polymers.

The mathematical definition of resin-rich areas by α-shapes/hulls will facilitate better
understanding and quantification of the relationship between resin-rich areas and material
properties. One intriguing direction to explore is using the detailed quantitative character-
ization of resin-rich areas as input features for machine learning models that could predict
material strength, volume resistivity, toughness, or failure strain. For example, the geomet-
ric distribution of the resin-rich areas could form the basis for shape descriptors [67] to be
used as input features in machine learning models. Alternatively, the resin-rich area size
histograms (shown in Fig. 6.6) can be treated as input features in histogram-based machine
learning models such as [68].

In 3D printed FRP materials, large resin-rich areas usually indicate gap areas between
printing strips (also called beads) or layers. One area for future research could be automat-
ically recognizing boundaries between strips (as well as the separate individual strips) by
connecting appropriate detected resin-rich areas (Fig. 7.2). Recognition of individual strips
will enable us to better evaluate the manufacturing process by determining the amount of
in-strip vs. inter-strip defects. For instance, substantial in-strip defects usually indicate im-
perfections in the raw material, whereas substantial inter-strip defects usually indicate an
excessive bead width in the 3DP setup.

In conclusion, our automated algorithms for characterizing additively manufactured FRP
composites assist in inspection of material microstructures, facilitate quantitative prediction
of material properties, and support optimization of 3D printing process parameters. We
hope that our algorithms and tools become an integral part of future research in composite
materials characterization, and industrial automation for additive manufacturing of compos-
ites.
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Inter-strip 
boundary

Detected fiber deficient areas

Figure 7.2: Adjoining resin-rich areas along an inter-strip boundary.



88

Bibliography

[1] Chuncheng Yang, Xiaoyong Tian, Tengfei Liu, Yi Cao, and Dichen Li. “3D printing for
continuous fiber reinforced thermoplastic composites: mechanism and performance.”
In: Rapid Prototyping Journal 23.1 (2017), pp. 209–215.

[2] Frank Van Der Klift, Yoichiro Koga, Akira Todoroki, Masahito Ueda, Yoshiyasu Hi-
rano, and Ryosuke Matsuzaki. “3D printing of continuous carbon fibre reinforced
thermo-plastic (CFRTP) tensile test specimens.” In: Open J. Compos. Mater 6.1
(2016), pp. 18–27.

[3] Grand View Research. Composites Market Size, Share & Trends Analysis Report.
July 2020. url: https : / / www . grandviewresearch . com / industry - analysis /

composites-market.

[4] J Zhang, BL Fox, D Gao, and AW Stevenson. “Inspection of drop-weight impact dam-
age in woven CFRP laminates fabricated by different processes.” In: Journal of com-
posite materials 43.19 (2009), pp. 1939–1946.

[5] Pedram Parandoush, Chi Zhou, and Dong Lin. “3D printing of ultrahigh strength
continuous carbon fiber composites.” In: Advanced Engineering Materials 21.2 (2019),
p. 1800622.

[6] Kentaro Sugiyama, Ryosuke Matsuzaki, Andrei V Malakhov, Alexander N Polilov,
Masahito Ueda, Akira Todoroki, and Yoshiyasu Hirano. “3D printing of optimized
composites with variable fiber volume fraction and stiffness using continuous fiber.”
In: Composites Science and Technology 186 (2020), p. 107905.

[7] WJ Cantwell and J Morton. “The significance of damage and defects and their detec-
tion in composite materials: a review.” In: The journal of strain analysis for engineering
design 27.1 (1992), pp. 29–42.

[8] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. “NIH Image to ImageJ:
25 years of image analysis.” In: Nature methods 9.7 (2012), p. 671.

[9] Sivasankaran Harish, D Peter Michael, A Bensely, D Mohan Lal, and A Rajadurai.
“Mechanical property evaluation of natural fiber coir composite.” In: Materials char-
acterization 60.1 (2009), pp. 44–49.

https://www.grandviewresearch.com/industry-analysis/composites-market
https://www.grandviewresearch.com/industry-analysis/composites-market


BIBLIOGRAPHY 89

[10] Hossein Ghayoor, Catharine C Marsden, Suong V Hoa, and António R Melro. “Nu-
merical analysis of resin-rich areas and their effects on failure initiation of composites.”
In: Composites Part A: Applied Science and Manufacturing 117 (2019), pp. 125–133.

[11] Brian S Hayes and Luther M Gammon. Optical microscopy of fiber-reinforced compos-
ites. ASM international, 2010.

[12] Bent F Sørensen and Ramesh Talreja. “Effects of nonuniformity of fiber distribution
on thermally-induced residual stresses and cracking in ceramic matrix composites.” In:
Mechanics of materials 16.4 (1993), pp. 351–363.

[13] VN Bulsara, Ramesh Talreja, and J Qu. “Damage initiation under transverse loading
of unidirectional composites with arbitrarily distributed fibers.” In: Composites science
and technology 59.5 (1999), pp. 673–682.

[14] Masaki Hojo, Masaaki Mizuno, Thomas Hobbiebrunken, Taiji Adachi, Mototsugu
Tanaka, and Sung Kyu Ha. “Effect of fiber array irregularities on microscopic inter-
facial normal stress states of transversely loaded UD-CFRP from viewpoint of failure
initiation.” In: Composites Science and Technology 69.11-12 (2009), pp. 1726–1734.

[15] Shinichiro Yamashita, Yuto Nakashima, Jun Takahashi, Kazumasa Kawabe, and Tet-
suhiko Murakami. “Volume resistivity of ultra-thin chopped carbon fiber tape rein-
forced thermoplastics.” In: Composites Part A: Applied Science and Manufacturing 90
(2016), pp. 598–605.

[16] Francisco Sacchetti, Wouter JB Grouve, Laurent L Warnet, and Irene Fernandez Vil-
legas. “Effect of resin-rich bond line thickness and fibre migration on the toughness
of unidirectional Carbon/PEEK joints.” In: Composites Part A: Applied Science and
Manufacturing 109 (2018), pp. 197–206.

[17] Hossein Ahmadian, Ming Yang, and Soheil Soghrati. “Effect of resin-rich zones on
the failure response of carbon fiber reinforced polymers.” In: International Journal of
Solids and Structures 188 (2020), pp. 74–87.

[18] Xiang Li, Sara Shonkwiler, and Sara McMains. “Fiber recognition in composite ma-
terials.” In: 2021 IEEE International Conference on Image Processing (ICIP). IEEE.
2021, pp. 2623–2627.

[19] Xiang Li, Adarsh Krishnamurthy, Iddo Hanniel, and Sara McMains. “Edge topology
construction of Voronoi diagrams of spheres in non-general position.” In: Computers
& Graphics 82 (2019), pp. 332–342.

[20] Xiang Li, Sara Shonkwiler, and Sara McMains. “Detection of resin-rich areas for sta-
tistical analysis of fiber-reinforced polymer composites.” In: Composites Part B: Engi-
neering 225 (2021), p. 109252.

[21] F Gommer, A Endruweit, and AC Long. “Quantification of micro-scale variability in
fibre bundles.” In: Composites Part A: Applied Science and Manufacturing 87 (2016),
pp. 131–137.



BIBLIOGRAPHY 90

[22] Heechun Yang and Jonathan S Colton. “Quantitative image processing analysis of
composite materials.” In: Polymer Composites 15.1 (1994), pp. 46–54.

[23] Qingping Sun, Haiding Guo, Guowei Zhou, Zhaoxu Meng, Zhangxing Chen, Hongtae
Kang, Sinan Keten, and Xuming Su. “Experimental and computational analysis of
failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under
longitudinal compression loading.” In: Composite Structures 203 (2018), pp. 335–348.

[24] Gyu Jeong, Jae Hyuk Lim, Chunghyeon Choi, and Sun-Won Kim. “A virtual experi-
mental approach to evaluate transverse damage behavior of a unidirectional compos-
ite considering noncircular fiber cross-sections.” In: Composite Structures 228 (2019),
p. 111369.

[25] Fausto Bernardini, Chandrajit L Bajaj, Jindong Chen, and Daniel R Schikore. “Auto-
matic reconstruction of 3D CAD models from digital scans.” In: International Journal
of Computational Geometry & Applications 9.04n05 (1999), pp. 327–369.

[26] Laurent-Philippe Albou, Benjamin Schwarz, Olivier Poch, Jean Marie Wurtz, and Dino
Moras. “Defining and characterizing protein surface using alpha shapes.” In: Proteins:
Structure, Function, and Bioinformatics 76.1 (2009), pp. 1–12.

[27] MATLAB. version 9.8.0 (R2020a). Natick, Massachusetts: The MathWorks Inc., 2020.

[28] The CGAL Project. CGAL User and Reference Manual. 5.2.1. CGAL Editorial Board,
2021. url: https://doc.cgal.org/5.2.1/Manual/packages.html.

[29] Jae-Kwan Kim, Youngsong Cho, Donguk Kim, and Deok-Soo Kim. “Voronoi diagrams,
quasi-triangulations, and beta-complexes for disks in R2: The theory and implemen-
tation in BetaConcept.” In: Journal of Computational Design and Engineering 1.2
(2014), pp. 79–87.

[30] Deok-Soo Kim, Jeongyeon Seo, Donguk Kim, Joonghyun Ryu, and Cheol-Hyung Cho.
“Three-dimensional beta shapes.” In: Computer-Aided Design 38.11 (2006), pp. 1179–
1191.

[31] Deok-Soo Kim, Donguk Kim, and Kokichi Sugihara. “Voronoi diagram of a circle set
from Voronoi diagram of a point set: II. Geometry.” In: Computer Aided Geometric
Design 18.6 (2001), pp. 563–585.

[32] Ioannis Z Emiris and George M Tzoumas. “Exact and efficient evaluation of the InCir-
cle predicate for parametric ellipses and smooth convex objects.” In: Computer-Aided
Design 40.6 (2008), pp. 691–700.

[33] Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. “On the shape of a
set of points in the plane.” In: IEEE Transactions on information theory 29.4 (1983),
pp. 551–559.
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Appendix A

Comparison between Distance
Transform Approach and Pixel-wise
Approximation

A possible alternative (approximate, pixel-wise) approach would be to identify resin-rich
areas by applying the concept of α-shapes. Similar to α-hulls, α-shapes can be used to
approximate the areas that can not be accessed by the α-probe. Since the computation
of α-shapes from point set inputs is available in many software packages, a variation of
our algorithm could detect resin-rich areas by approximating each fiber pixel (identified as
described in Section 6.2.1) as an input point, building the α-shape of such input points using
available software packages such as MATLAB or CGAL (replacing Section 6.2.2 and 6.2.3),
and computing its complement. We implemented this alternative pixel-wise approximation
method building on the alphaShape() function in MATLAB. However, compared to our
proposed α-hull method, this pixel-wise approximation method is orders of magnitude slower
(Table A.1). For example, for the real-world high-resolution image of 18,270*10,306 pixels
it took over 85 minutes, while our proposed linear-time α-hull method takes less than 3.5
seconds. Furthermore, the computation time in Table A.1 is for each single choice of α. In
practice, users may wish to explore different α values to find the one most suited to their
research objectives or to collect additional statistics.



APPENDIX A. COMPARISON BETWEEN DISTANCE TRANSFORM APPROACH
AND PIXEL-WISE APPROXIMATION 95

Image size (pixels) Computation time
(pixel-wise)

Computation time
(ours)

2000*2000 14.28s 0.08s
4000*4000 59.56s 0.29s
6000*6000 161.43s 0.65s
8000*8000 463.16s 1.24s

10000*10000 2429.20s 1.83s
18270*10306 (real-world

size)
5116.26s (85.27min) 3.46s

Table A.1: Computation time comparison (for each choice of α) between the pixel-wise
approximation and our proposed α-hull method.
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Appendix B

Time Complexity Analysis: α-hull
Construction via Distance Transform

Here we demonstrate that the computation time of our algorithm in practice has a linear
relationship to the area (n by m pixels) of the input image.

There are three major steps in our algorithm: image binarization, distance transform
calculation, and morphological dilation calculation. Given an input image of size n by m
pixels and probe radius of α, the run-time complexity of the three steps are as follows.

In the image binarization step, Otsu’s method [41] is implemented, which has a time
complexity MAX(O(nm),O(Nbins

2)), where Nbins is the number of bins in the image his-
togram, usually set as 256. Because the cross-sectional images for FRPs usually have a

Figure B.1: Computation time of the morphological dilation operation with different α
values. The input image size is 5,000*5,000 pixels.
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high resolution (m, n much greater than 256), the complexity of image binarization can be
considered as O(nm).

In the distance transform operation, the algorithm proposed by Maurer et al. [42] is
applied. It is a linear time algorithm with regards to the size (number of pixels) of the input
image. So the run time complexity of this step is also O(nm).

In the morphological dilation operation, the naive implementation has a time complexity
O(nmα2), relating to both the size of the input image and the probe size α. However, in
our implementation by using optimization methods [69, 70] and due to the fact α is much
smaller than n and m, the morphological dilation operation time is nearly independent of
the α value (Fig. B.1). So the run time of this step is also linear to (nm) in practice, only
depending on the size of the input images.

Since the first two steps in the algorithm have time complexity O(nm), and the third step
is also linear to (nm) in practice, the overall computation time of our algorithm in practice
has a linear relationship to the size of the input image (nm).
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