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In the microstructure characterization of metallic materials, the intercept method is one of the most
widely accepted approaches to determine average grain size due to its simplicity, accuracy, and the abil-
ity to handle both equiaxed and non-equiaxed grain structures. However, its manual implementation is
relatively time-consuming and error-prone, and the design of automated implementations is challenging
due to the requirement of recognizing, classifying, and scoring different types of intersections (between
test patterns and grain boundaries) by international standards such as ASTM E112 and EN ISO 643. In this
research, a novel algorithm is proposed to automate the intercept method for grain size measurement
from microscopic images. Building on topological skeletons, the algorithm is able to extract continuous
and closed grain boundaries from the raw image, and determine the average grain size by recognizing
and classifying different types of intersections in accordance with international standards. The effective-
ness and efficiency of the proposed algorithm is validated on metallographic microscope images from
both high-purity iron and stainless steel. Additionally, our algorithm has been extended to automate
other standard grain size measurement methods such as the planimetric method and the whole grain
area method.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Grain size measurement from microscope images is an
important task for the microstructure characterization of metallic
materials. The internal structures of metallic materials are made
up of individual crystalline areas possessing their own distinct
orientations, which are known as grains. The average grain size
of the metallic materials has significant influence on their mechan-
ical and material properties such as strength [1,2], corrosion
behavior [3], hot deformation behavior [4], and fracture behavior
[5]. An accurate measurement of the average grain size enables
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researchers to understand material microstructures, predict mate-
rial properties/behaviors, and optimize manufacturing parameters
[6].

Grains can be observed from cross-sectional microscope images
of metallographic specimens after a series of preparation steps
such as polishing and etching. Because of the importance and effec-
tiveness of grain size measurement for material microstructure
characterization, official standards for determining average grain
size from microscope images are published and regulated across
countries, such as ASTM E112 [7] (United States), EN ISO 643 [8]
(Europe/International), JIS G 0551 [9] (Japan), and GB/T 6394 [10]
(China). In these standards, three traditional micrographic meth-
ods are described to determine the average grain size: the compar-
ison method, the planimetric method, and the intercept method.
These standard test methods are usually performed manually,
which makes the measurement process time-consuming and
error-prone.

Image processing techniques are widely used in microstructure
characterization of various materials for increased efficiency and
accuracy [11–15]. To measure the average grain size of metallic
materials, various automatic or semi-automatic image processing
algorithms have been developed. Based on connectivity and mor-
phological operations, Peregrina-Barreto et al. [16] proposed auto-
matic image thresholding and segmentation processes to identify
individual grain regions. By utilizing the concept of ultimate open-
ing and top-hat transformation, Paredes-Orta et al. [17] developed
a watershed-segmentation-based algorithm to separate individual
grains. Banerjee et al. [18] applied Canny edge detection and an
elaborate region-expansion process to determine grain sizes of
interstitial-free steels. Building on MATLAB image processing tools,
García-García et al. [19] proposed a semi-automatic approach to
characterize grain size distribution of austenitic steels. Flipon
et al. [20] designed an semi-automatic image analysis procedure
to extract grain boundaries by utilizing edge detection and water-
shed segmentation algorithms.

Most of these existing approaches focus on procedures to pre-
process input images and identify individual grain areas (or simi-
larly, extract grain boundaries). After individual grain identifica-
tion, these approaches generally employed the planimetric
method [7] to determine the average grain size because its calcu-
lation process is straightforward under computer-aided opera-
tions. The average grain size can be conveniently calculated by
the planimetric method from locations and sizes of identified grain
areas (see Section 3.5.2 for details). However, the planimetric
method’s effectiveness is limited to uniformly equiaxed grains
(whose axes have approximately the same length).

The intercept method is one of the most widely accepted micro-
graphic methods due to its simplicity, accuracy, and applicability
to both equiaxed and non-equiaxed grain structures. Thus, in the
official standards, the intercept method is the preferred test
method recommended for evaluating materials with all forms of
grain structures, no matter if they are uniformly equiaxed or not
[7–10]. Banerjee et al. [18] and Flipon et al. [20] discussed the
use of the intercept method in their grain size measurement algo-
rithms, but did not provide an automatic solution in compliance
with the standards, in particular identifying special types of inter-
section points located at particular positions such as grain junc-
tions (which should be scored as multiple intersections according
to the standards). The largest challenge to automate the intercept
procedure is to automatically identify and classify these special
types of intersections in accordance with the standards (see Sec-
tion 2.2 for more details).

An alternative approach to determine average grain size is to
develop predictive models using machine learning techniques
[21,22]. The accuracy of machine learning models largely depends
on the amount of high-quality labeled data. Since manual labeling
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processes are usually less efficient and consistent, automatic image
processing algorithms for determining and labeling grain sizes
would further improve the effectiveness of machine-learning-
based approaches.

Therefore, in this paper, we propose a novel automatic algo-
rithm to determine grain sizes of metallic materials (Fig. 1) based
on the intercept method because of its wide applicability and
acceptance by industry. By exploiting topological skeletons [23],
our approach is able to follow the intercept procedure as it is spec-
ified by the standards [7–10], recognizing and scoring all the differ-
ent types of intersection points that were not handled by previous
work. This includes junction intersection points, the most chal-
lenging to automate. Additionally, our algorithm could be easily
extended to automate other standard grain size measurement
methods such as the planimetric method [7–10] and the whole
grain area method [24]. Our implementation is useful not only to
automatically determine average grain size for material
microstructural characterization, but also as an educational tool
for improving students’ and researchers’ understanding of the pro-
cedure details of standard grain size measurement methods by
generating and visualizing real-world measurement examples.
The efficiency and effectiveness of our algorithm are validated on
real-world microscopic images of both high-purity iron and stain-
less steel.
2. Materials and methods

In this section, we first describe the materials and microscope
images being used for developing and testing our algorithm (Sec-
tion 2.1). We then provide background on the intercept method
and its differences across the standards (Section 2.2). Finally, we
introduce our automatic grain size measurement algorithm and
provide implementation details (Section 2.3).

2.1. Materials and microscope images

In order to test the robustness and generality of our algorithm
on characterizing microstructures of different materials, we pre-
pared a total of 200 microscope images generated from high-
purity iron and stainless steel specimens (100 images from each
material, see Fig. 2 for example inputs). The ASTM grain size num-
bers [7] of these specimens range from 3 to 7.

Our specimens were prepared in accordance with ASTM E3-11
‘‘Standard Guide for Preparation of Metallographic Specimens”
[25]. The microscopy and specimen preparation specifications are
listed in Table 1.

As a consequence of different material microstructures and
etching methods, microscope images generated from high-purity
iron and stainless steel have dissimilar characteristics. For exam-
ple, compared to microscope images of high-purity iron, images
of stainless steel have a higher contrast between grains and grain
boundaries. However, they also experience higher noise and impu-
rity levels (Fig. 2).

Therefore, these two classes of microscope images help us test
and improve the applicability of our algorithm on microscope
images of different materials, under different image and specimen
preparation conditions.

2.2. The intercept method

Official standards [7–10] provide and specify the intercept
method as one of the standard test methods for determining aver-
age grain size. It is the only one of these standard test methods rec-
ommended for measuring the average grain size of both uniformly
equiaxed grain structures and anisotropic grain structures.



Fig. 2. Examples of input microscope images with the two types of microstructures: (a) ferrite grains from high-purity iron; (b) austenite grains from stainless steel.

Table 1
Details of the metallographic preparation procedure.

High-purity iron Stainless steel

Microstructure Ferrite Austenite
Cutting Metallographic cutting machine
Grinding 1000-grit sandpaper
Polishing Polishing cloth
Etching Nital 1 g KMnO4 +10 ml H2SO4 +90 ml H2O

Microscopy Leica DMi8C microscope; magnification: 100x or 200x;
image size: 5472*3648 pixels

Fig. 1. An example input image (and test pattern) showing the experimental results of our algorithm to measure grain size by automating the intercept method.
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The main idea of the intercept method is to draw random test
patterns (lines or circles) on microscope images, and count the
number of intersections (Nintersections) between test patterns and
grain boundaries. The number of grains per square inch at 100X
magnification (denoted as NAE) and the grain size number (denoted
as G, a widely used grain size evaluation index) can be then calcu-
lated from the number of intersections by the following equations
[7–10]:
3

NAE ¼ 2G�1 ð1Þ

G ¼ �3:288� 6:643856 � log10‘ ð2Þ
where ‘ is the mean intercept length (in mm) that can be calculated
from:

‘ ¼ L
M � Nintersections

ð3Þ

where L is the total length of test patterns (in mm), M is the magni-
fication of the microscope, and Nintersections is the number of intersec-
tions. Since L and M are generally constant during the evaluation of
the same batch of microscope images, correctly counting the num-
ber of intersections (Nintersections) is the most critical task in the inter-
cept method.

Fig. 3 shows real-world examples of two commonly used inter-
cept methods and their test patterns: the so-called ‘‘lineal” inter-
cept procedure [26] that employs straight test lines, and the
circular intercept procedure [27,28] that employs one or multiple
(concentric) test circles.



Fig. 3. Examples of two common intercept patterns: (a) a real-world example of grain structure (after applying our grain boundary extraction procedure), (b) Heyn lineal
intercept procedure [26], (c) Abrams three-circle procedure [27]. Red points represent junction intersections that should be scored as 1.5 intersections; yellow points
represent test line end point intersections that should be scored as 0.5 intersections; blue points represent all other ‘‘regular” intersections [7].

X. Li, L. Cui, J. Li et al. Materials & Design 224 (2022) 111358
The international standards [7–10] provide following rules for
the intersection counting process:

� Intersections at the junction points of three grains should be
scored as 1.5 or 2 (see Fig. 3 red intersection points).
– For lineal intercept procedures, junction intersections should

be scored as 1.5.
– For circular intercept procedures, junction intersections

should be scored as 1.5 following ASTM E112 (United States)
[7]; or be scored as 2 following EN ISO 643 (Europe) [8], JIS G
0551 (Japan) [9], or GB/T 6394 (China) [10] standards.

� Intersections at ends of test lines should be scored as 0.5 (only
applicable for the lineal intercept procedure; see Fig. 3 yellow
intersection points).

� All other intersections should be scored as 1.

In this research, we design an algorithm to automate the inter-
cept procedure that is able to identify and classify the intersections
into the aforementioned scoring types in accordance with the stan-
dards. Although all the standards could be handled by our algo-
rithm, for the ease of demonstration, we adapt the ASTM
standard [7] and score all the junction intersections as 1.5 in exam-
ples throughout this paper.
2.3. Algorithm details

In shape analysis, the topological skeleton refers to a thin ver-
sion (usually one-pixel wide) of the input shape, where all pixels
of this resulting skeleton are equidistant from the boundary of
the input shape.

Exploiting topological skeletons, we design an algorithm that
automates the intercept method for grain size measurement from
microscope images (Fig. 4). In the algorithm, we first pre-process
input images, segmenting them into potential grain and grain
boundary regions by adaptive thresholding (Section 2.3.1). Then,
we extract grain boundaries and identify individual grains by con-
structing and analyzing topological skeletons of the thresholded
grain boundary regions/pixels (Section 2.3.2). Finally, by utilizing
grain junction points identified from the topological skeleton, we
compute intersections between test patterns and grain boundaries,
classify them into the different intersection types, and calculate
average grain sizes and grain size numbers (Section 2.3.3).

The topological skeleton enables us to extract grain boundaries,
separate individual grains, and identify intersection points accu-
rately and robustly. This approach’s advantages include:
4

� preserving the connectivity information of grain boundaries,
� eliminating the interference from variations of grain boundary
thickness,

� reducing the sensitivity to image noise and microstructural arti-
facts adjacent to grain boundaries,

� recognizing partially missing/broken grain boundaries and
assisting in completing/connecting them, and

� identifying grain junctions for intersection classification (in
order to implement the intercept method).

2.3.1. Pre-processing and image thresholding
Starting with the input microscope image (Fig. 4(a)), our algo-

rithm first converts it to grayscale and removes high-frequency
image noise by applying Gaussian smoothing. In these grayscale
images, grain boundary pixels are visually darker than the grain
pixels and can generally be segmented by global thresholding tech-
niques such as Otsu’s method [29]. However, global thresholding
techniques perform less efficiently on poor-quality images (e.g.
under uneven lighting conditions), which are not rare in micro-
scopic images of metallic materials [17].

Adaptive thresholding [30] is designed to handle both good and
poor quality images by first estimating their background illumina-
tion conditions, and then implementing local thresholding opera-
tions accordingly (see an example in Fig. 5). Therefore, we apply
the adaptive thresholding method in our algorithm for effective
grain and grain boundary pixel segmentation (Fig. 4(b)) from
images of various qualities.

After adaptive thresholding, we obtain a binary image repre-
senting our preliminary segmentation of grain and grain boundary
pixels. To further clean this binary image, we utilize morphological
opening and area opening operations [31] to remove isolated
image noise and microstructural artifacts (e.g. small holes,
scratches, or stains).

2.3.2. Grain boundary extraction
After segmenting the original image into grain and grain bound-

ary pixels, we construct a topological skeleton of the grain bound-
ary using the algorithm of Lee et al. [23]. In the topological
skeleton, grain boundaries appear as long, connected edges,
whereas noise/artifacts attached to grain boundaries tend to
appear as short dangling branches (Fig. 6), and discontinuous grain
boundaries appear as long dangling branches (Fig. 7).

In our algorithm, users have the choice to define the threshold
to distinguish long and short dangling branches, which correspond
to discontinuous boundaries and noise/artifacts respectively, as a
percentage of the average length of skeleton edges (grain bound-



Fig. 4. Full algorithm overview: (a) input image, (b) adaptive thresholding results, (c) skeletonization, (d) skeleton/branch pruning, (e) intersection computation, (f)
intersection classification. Step (b-d) are designed to extract continuous and closed grain boundaries; and step (e,f) are designed to correctly count intersections in accordance
with the standards.

Fig. 6. An example of the grain boundary extraction and junction point identification process: (a) input image, (b) the topological skeleton (branches in red), (c) resulting
grain boundaries after pruning branches from the skeleton, (d) identified grain junction points (in crimson).

Fig. 5. An example of adaptive thresholding on images under uneven lighting conditions: (a) input image, (b) thresholding result, (c) estimated background illumination.
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Fig. 7. An example of discontinuous grain boundary completion/connection: (a) input image; (b) the topological skeleton; (c) grain boundaries after pruning short branches,
with the discontinuous grain boundary and its free end highlighted in blue; (d) resulting grain boundaries after completing/connecting the discontinuous boundary.
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aries). Our experiments show that setting this threshold length as
50% of the average length of skeleton edges generally provides
good results for our dataset.

Thus, the topological skeleton allows us to distinguish (with
high accuracy) such noise and artifacts from true grain boundaries,
allowing us to prune short dangling branches from the skeleton.
Note that the pruning of original branches may cause the genera-
tion of new dangling branches. Therefore, we iteratively imple-
ment the branch pruning process until no more short dangling
branches exist (Fig. 6(c)). During the construction of the skeleton,
the junction points among individual grains are also identified
(Fig. 6(d)). These junction points will be utilized to recognize junc-
tion intersections, as required for the intercept method (see
Section 2.3.3).

As shown in Fig. 7, after the pruning of short branches, discon-
tinuous grain boundaries may (and are likely to) still exist in real-
world microscope images depending on various factors such as the
characteristic of the material, the quality of the specimen prepara-
tion process, and/or the illumination conditions during the micro-
imaging process. In the topological skeleton, discontinuous grain
boundaries are represented as long dangling branches.

During the iterative branch pruning process, we retain these
long dangling branches, and provide three options for users to han-
dle discontinuous grain boundaries:

1. Extend branches from their free ends until colliding with other
edges.

2. Manually complete/connect branches.
3. Preserve discontinuous branches without completing/connect-

ing them.

A comparison of the effectiveness of these three options is sum-
marized in Table 2. On our real-world test images, where few grain
boundaries are discontinuous, all of these three options work well
Table 2
Evaluation of different options for handling discontinuous grain boundaries (long
dangling branches).

Option 1
(Extension)

Option 2 (Manual
Connection)

Option 3
(Preservation)

Accuracy Good Very Good Good
Efficiency Good Fair Good

Individual Grain
Separation

Yes Yes No
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with the intercept method and obtain similar grain size measure-
ment results. Option 1 (extension) is recommended in general
because it is fully automatic, and is able to identify/separate indi-
vidual grains. Although individual grain separation is not necessary
for the intercept method, it could help researchers conduct further
microstructural analysis beyond the calculation of average grain
sizes (see Section 3.5). With regard to applications that require
high measurement accuracy, or when most of the grain boundaries
are discontinuous, option 2 (manual connection) is recommended.
Our implementation accelerates the manual branch completion/-
connection process by highlighting long dangling branches and
their free ends that need to be manually connected (Fig. 7(c)).

After converting grain boundary pixels to a topological skeleton,
pruning its short branches and connecting long branches, our algo-
rithm extracts closed and continuous grain boundaries as well as
their corresponding individual grains (Fig. 4(d)). Grain junction
points are also identified for classifying regular/junction intersec-
tions in the intercept procedure (see Section 2.3.3).

2.3.3. Intersection recognizing and counting
In this step, the user is able to customize test patterns (a com-

bination of test lines and/or concentric test circles) for the inter-
cept procedure. With the test patterns, our algorithm first
computes their intersections with identified grain boundaries
(Fig. 4(e)). For the purposes of determining if an intersection has
occurred, we need to take into consideration the original thickness
of grain boundaries. We implement this tolerance � as a thickness
offset to be added on the grain junction points computed from the
one-pixel-wide topological skeleton (where the effect of boundary
thickness is eliminated). For an intersection, if its distance to any
grain junction/end point is smaller than the user-defined offset
parameter �, our algorithm considers this intersection as being
located at the corresponding junction/end point. In our experi-
ments, we found that setting � as the average grain boundary
width (which can be easily obtained during the construction of
the topological skeleton [23]) generally provided good measure-
ment results (Fig. 8).

Then we classify these intersections as one of the three different
types according to their relative locations with respect to test pat-
terns and grain junction points:

1. If an intersection is within � of any of the grain junction points,
the intersection would be substituted by its corresponding
grain junction point as a junction intersection in our algorithm.
A junction intersection is scored as 1.5 in the intercept method



Fig. 8. An example of intersection recognition and classification in our automated intercept procedure: (a) an input image with average grain boundary width �; (b) its
topological skeletonization, and regions that count as grain junctions (in red circles with radii �); (c) recognized intersections between two test lines and the topological
skeleton; (d) classified intersections: regular intersections in blue, (test line) end intersections in yellow, and junction intersections in red. Multiple intersections close to the
same grain junction are merged into a single junction intersection.
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according to the ASTM standard [7]. Note if multiple intersec-
tions are close to the same grain junction point, such a grain
junction point would only be counted as a junction intersection
once (Fig. 8).

2. If an intersection is not located at a grain junction points, but is
within � of any of the test line ends, it would be determined as
an end intersection by our algorithm and be scored as 0.5 in the
intercept method.

3. If an intersection is neither a junction intersection nor an end
intersection, it is a ‘‘regular” intersection and should be scored
as 1 in the intercept method.

After computing and classifying the intersections (Fig. 4(f)), as
the result of our automatic intercept procedure, our algorithm
counts the total intersection scores, and calculates the average
grain size as well as the ASTM grain size number by applying
Eqs. (1)–(3).

3. Results and discussion

3.1. Overview

Our method successfully automates the intercept method for
grain size measurement of all the 200 test microscope images, no
matter if they are ferrite grains of high-purity iron or austenite
grains of stainless steel. To evaluate the performance of our
method, we also measure the average grain size of these micro-
scope images both manually and using commercial software for
comparison (Fig. 9). For all tests, the placement and shape (linear,
circular, etc.) of test patterns was chosen randomly and preset for
each image.

For the manual grain size measurement, three metallographic
experts were invited to apply the intercept method (as described
in ASTM E112 [7]) to manually determine the average grain size
for each microscope images. Then anywhere the results differed,
the experts corrected obvious oversights and then discussed
remaining areas of disagreement (in either the existence or classi-
fication of intersections). They were eventually able to come to
unanimous consensus, so grain sizes for all 200 images were used
as ground truth results (see examples in Fig. 9(a,d)).

For the grain size measurement implementation using commer-
cial software, a different three material experts, who were familiar
7

with computer-aided image processing and metallographic soft-
ware, were invited to apply the intercept method to determine
the average grain size of our microscope images by selecting and
applying appropriate commercial software. The experts suggested
and implemented a semi-automatic procedure that first manually
removes image noise and extracts grain boundary pixels using
the image processing software provided by the microscope manu-
facturer Leica Microsystems [32], and then utilizes commercial
metallographic software iCALIBUR Master [33] to automatically
implement the intercept method on the extracted grain boundary
pixels (see examples in Fig. 9(c,f)). Unfortunately, for this second
step, to our knowledge no commercial software is able to classify
intersections into the different intersection types and count them
accordingly as described in the standards, so iCALIBUR Master
actually only implements an approximation of the intercept
method.

As shown in Fig. 9, to measure the average grain size of metallic
materials by the intercept method, our proposed algorithm
achieves basically the same level of accuracy as manual labeling,
while significantly reducing the operation time, by 95%. Compared
to the semi-automatic approach by commercial software that only
recognizes intersection points, our automatic method is able to fur-
ther classify and count them in accordance with the standards [7–
10], which leads to better grain size measurement performance.

Next, we present detailed analysis of the accuracy and effi-
ciency of our approach.

3.2. Accuracy

Five metrics are selected in order to evaluate and compare the
accuracy of our approach and the semi-automatic commercial soft-
ware approach (with the manual method as ground truth):

(a) Precision of intersection recognition:
Precision ¼ # of correctly recognized intersections
# of recognized intersections

: ð4Þ

The metric Precision (Recognition) answers the question: how
many recognized intersections (by our approach or commer-
cial software) are true/real intersections? This metric focuses
on the intersection recognition process, and provides insight
into the algorithm’s ability to not generate false positives.



Fig. 9. Experimental result comparing grain size measurement using the intercept method as implemented by: manual labeling, our approach, and commercial software
[32,33]. Upper row: results from an example image of equiaxed ferrite grain microstructure (high-purity iron); middle row: results from an example image of equiaxed
austenite grain microstructure (stainless steel); lower row: results from an example image of elongated/non-equiaxed austenite grain microstructure (stainless steel). For the
measurement of all types of grain structures, our method not only recognizes and classifies intersections in strict accordance with the standards [7–10], but also outperforms
the commercial software in both accuracy and efficiency.
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(b) Recall of intersection recognition:
Recall ¼ # of correctly recognized intersections
# of true intersections

: ð5Þ

The metric Recall (Recognition) answers the question: how
many true intersections are correctly recognized (by our
approach or commercial software)? This metric also focuses
on the intersection recognition process, and provides insight
into the algorithm’s ability to not miss true intersections
(false negatives).
(c) Accuracy of intersection classification:
Accuracyc ¼
# of correctly classified intersections
# of correctly recognized intersections

: ð6Þ

The metric Accuracy: Classification specifically evaluates the
accuracy of the intersection classification process of our
approach. This metric is not applicable for commercial soft-
ware since no existing commercial software is able to classify
types of intersections.
8

(d) Mean Absolute Error (MAE) of the measured ASTM grain
size number:
MAE ¼

Xn

i¼1

yi � xij j

n
ð7Þ

where n is the total number of test images, yi is the measured

ASTM grain size number of the ith test image by the algo-
rithm, xi is the ground truth ASTM grain size number (recall

Eq. 2) of the ith test image by manual labeling. This metric
focuses on evaluating the overall performance of the algo-
rithm (both intersection recognition and classification
processes).
(e) Accuracy of the measured average grain size:
Accuracygs ¼ 1� measured Avggs � actual Avggs

�� ��
actual Avggs

ð8Þ

wheremeasured Avggs is the average grain size (inmm2) mea-
sured by the algorithm (our approach or commercial soft-
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ware), and actual Avggs is the ground truth average grain size
(in mm2) determined by manually operated intercept
method. This metric also focuses on evaluating the overall
performance of the algorithm.
Experimental results for our approach and commercial software
[32,33] are summarized in Table 3 with regard to the aforemen-
tioned metrics. In this table, results of our algorithm are measured
in the case of handling discontinuous grain boundaries using the
extension option, since it is the recommended option in general
(see Section 3.4 for discussion of other options).

For grain boundary extraction and intersection recognition pro-
cesses, although the semi-automatic procedure that applies com-
mercial software [32,33] achieves a high Recall (Recognition) of
97%, its Precision (Recognition) is relatively low (81%), which indi-
cates that the procedure is prone to generate false positive inter-
sections and overestimate the average grain size. This is due to
the limitation of basic image processing techniques used in the
commercial software when handling complex image and material
microstructure conditions. For example, to the best of our knowl-
edge all commercial software extracts grain boundary pixels using
global thresholding or edge detection techniques, which are less
accurate on microscope images under conditions of unbalanced
background illumination (recall Section 2.3.1). (For our test input,
however, the illumination was almost always fairly well balanced.)
As a larger source of concern, to the best of our knowledge com-
mercial software (including iCALIBUR Master) generally only uses
morphological operations to remove isolated image noise and
microstructural artifacts. However, it is challenging for morpholog-
ical operations to identify and remove noise and artifacts that are
attached to grain boundaries (Fig. 10(c)).

In contrast, our algorithm employs a novel procedure to handle
complex image and material microstructure conditions by exploit-
ing image processing and geometric techniques such as adaptive
thresholding, topological skeletons, and skeleton/graph pruning
(Fig. 10(b)). The effectiveness of our algorithm on the grain bound-
ary extraction and intersection recognition process is quantified by
y comparison between our approach and commercial software. Our approach
ter performance with respect to all the metrics.

Ours Software [32,33]

ision (Recognition) >99% 81%
call (Recognition) >99% 97%
racy: Classification 98% -
: Grain Size Number 0.023 0.394
racy: Avg Grain Size 98% 76%

Our algorithm outperforms commercial software on handling images with
nd/or microstructural artifacts: (a) an example input, (b) result using our
m, (c) result using commercial software [32,33], with a considerable
of false positive intersections.
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metrics Precision (Recognition) and Recall (Recognition) (both are
> 99%).

For the intersection classification process, our algorithm is able
to classify recognized intersections into regular, junction, and end
intersections with 98% accuracy (Accuracy: Classification). In the
computation of the topological skeleton and junction points,
noise/artifacts attached to grain junction areas may cause the com-
puted junction positions to slightly deviate from the their true
position, leading to incorrect intersection recognition and/or clas-
sification (Fig. 9(b) red arrows). In our experiments, this ‘‘junction
position deviation” situation is infrequent (< 2%) and does not
cause a noticeable effect on the final measurement of grain size
numbers (refer to low values of MAE and individual errors).

The MAE of ATSM grain size number measured by our approach
is 0.023, with errors for individual images ranging from 0 to 0.096.
(Compare this with what the standards estimate is the precision of
the intercept method itself, �0:25 [7–10].) In comparison, for com-
mercial software, the MAE is 0.394, with errors for individual
images ranging from 0.012 to 1.116. Therefore, considering the
entire grain size measurement process, our approach does not only
achieve an overall higher accuracy (MAE), but also a greater consis-
tency (considerably lower error ranges and worst-case errors).
Similarly, for the accuracy of estimating the average grain size/area
(Accuracy: Avg Grain Size), our algorithm outperforms the commer-
cial software (98% to 76%).

3.3. Efficiency

The average measurement/computation time for different inter-
cept method implementations (average per test microscope image)
are listed in Table 4. Our automatic approach is orders of magni-
tude faster than manual operation and the commercial software
approach. Note that in our experiments, manual operation and
the semi-automatic commercial software approach are operated
by experienced experts. For researchers who are not sophisticated
in the intercept method and/or basic image processing techniques,
the measurement time of manual operation and/or the commercial
software approach would likely be even longer.

3.4. Handling discontinuous boundaries

Table 5 details the performance of our algorithm under different
options for handling discontinuous grain boundaries. All three
options are able to support our approach to automate the intercept
method for a more accurate and efficient grain size measurement
(compared to existing commercial software). Since the MAE and
the computation time of the three options are similar, as discussed
in Section 2.3.2, the extension option will generally be the best
choice because it is the only option that is both fully automatic
and is able to separate individual grains.

3.5. Additional grain size characterization capabilities

While implementing our algorithm with the extension or the
manual connection option, the capability of individual grain sepa-
ration enables our algorithm to both provide additional grain size
and morphology information, as well as automate other standard
test methods beyond the intercept method.
Table 4
Average measurement/computation time for different intercept method implemen-
tations (per test microscope image).

Manual Our Approach Software [32,33]

102.83s 5.03s 25.32s



Table 5
The mean absolute error (MAE) and efficiency (average computation time) of our
algorithm under different options for handling discontinuous grain boundaries.

MAE Time

Extension 0.023 5.03s
Manual Connection 0.021 10.54s

Preservation 0.028 4.42s
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3.5.1. Grain size statistics
Since individual grains are identified during our algorithm, the

statistics of their size and morphology characteristics, such as area,
aspect ratio, and orientation, can be automatically summarized as
histograms (Fig. 11) for further microstructure analysis.
Fig. 12. Sample results of the extension of our algorithm to automate the
planimetric method [7], where the inside grains, side grains, and corner grains
are counted as 1, 0.5, and 0.25 effective grains respectively.
3.5.2. Automating other standard test methods
The accurate individual grain identification process enables our

algorithm to automate not only the intercept method, but also
other standard test methods for determining the average grain size
of metallic materials, such as the planimetric method and the
whole grain area method.

For the planimetric and the whole grain area method, according
to standards ASTM E112 [7] and E1382 [24], identified grains are
classified into one of three groups: (1) inside grains: grains that
completely stay within the image region; (2) side grains: grains
that intersect with the side(s) of the image, but do not intersect
with image corners; (3) corner grains: grains that intersect with
image corners. We classify our recognized grains accordingly (by
examining if their interiors contain image boundary/corner pixels).

The planimetric method [7] measures the number of grains per
unit area by considering the entire image region and counting the
inside grains, side grains, and corner grains as 1, 0.5, and 0.25 effec-
tive grains respectively. In contrast, the whole grain area method
[24] measures the average grain area by only considering the
inside grains and their corresponding regions.
Fig. 11. Individual grains identified by our algorithm, and their statistics:
histograms of grain areas, aspect ratios, and orientations.

Fig. 13. Sample results of the extension of our algorithm to automate the whole
grain area method [24], where only the inside grains (and their corresponding
regions) are considered.
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Example results of applying our algorithm’s approach to han-
dling and automating the planimetric method and the whole grain
area method are illustrated in Fig. 12 and 13.

4. Limitations and future work

Although most image noise and microstructural artifacts can be
removed in the image pre-processing and skeleton pruning pro-
cesses, our algorithm may falsely identify large areas of stains or
long scratches (Fig. 14(a)) as grain boundaries, which would cause
an over-segmentation of grain structures and thus an under-
estimation of the average grain size.

Since metallographic images with large areas of microstructural
artifacts are prone to affect the quality of both automatic and man-
ual grain size measurement procedures, we suggest designing



Fig. 14. Possible failure cases: (a) large scratches, which can lead to oversegmen-
tation of grains; (b) a highly non-convex grain structure (red arrows pointing out its
two halves that should potentially have been divided into two different grains,
depending upon crystal orientation.
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additional steps to recognize and eliminate such images prior to
the measurement procedures. Potential solutions include imple-
menting additional manual inspection, and/or designing machine
learning models [34] for automatic detection of such artifacts.

Another interesting topic is the choice of how to handle highly
non-convex grain structures. In the manual labeling process, since
the overwhelming majority of individual grains are convex or
nearly convex (e.g. regular equiaxed and elongated grains),
researchers tend to segment highly non-convex grain structures
into multiple convex (sub-) grain areas regardless of the absence
of visible grain boundaries between these sub-areas. An example
is shown in Fig. 14(b), where the highly non-convex grain would
likely be labeled as two convex grains (red arrows) by metallurgi-
cal technicians, although no visible boundaries exist between
them. Such highly non-convex grains could potentially be identi-
fied and highlighted when calculating grain size statistics (Sec-
tion 3.5.1), allowing users to choose whether to further segment
them or not.
5. Conclusion

In this paper, we have presented a novel algorithm to automate
the intercept method for measuring the average grain size of
metallic materials. By exploiting topological skeletons, our algo-
rithm is able to extract continuous and closed grain boundaries,
and measure the average grain size by recognizing and classifying
intersections between selected test patterns and grain boundaries.
To the best of our knowledge, this is the first automatic implemen-
tation of the intercept method that classifies and counts different
types of intersections in compliance with international standards.

Due to the effectiveness of individual grain identification, our
algorithm has not only been applied in the automation of the inter-
cept method, but also been extended to automate other standard
test methods such as the planimetric method and the whole grain
area method. Our algorithm is also able to summarize grain statis-
tics such as grain areas, aspect ratios, and orientations.

Our algorithm successfully automates and implements the
intercept method, as validated on 200 real-world test microscope
images (of different material microstructures under different spec-
imen preparation conditions), achieving a robust overall accuracy
(> 98%) on the intersection recognition and classification pro-
cesses. Compared to existing commercial software, our algorithm
reduces the average measurement error 94%, from 0.394 to 0.023
grain size units, while reducing the average computation time by
80% (and 95% compared to manual calculation).
6. Data availability

Data will be made available on request.
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