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Abstract Fiber-reinforced polymer (FRP) composites
are increasingly popular due to their superior strength
to weight ratio. In contrast to significant recent advan-
ces in automating the FRP manufacturing process via
3D printing, quality inspection and defect detection
remain largely manual and inefficient. In this paper,
we propose a new approach to automatically detect,
from microscope images, one of the major defects
in 3D printed FRP parts: fiber-deficient areas (or
equivalently, resin-rich areas). From cross-sectional
microscope images, we detect the locations and sizes
of fibers, construct their Voronoi diagram, and employ
α-shape theory to determine fiber-deficient areas. Our
Voronoi diagram and α-shape construction algorithms
are specialized to exploit typical characteristics of 3D
printed FRP parts, giving significant efficiency gains.
Our algorithms robustly handle real-world inputs
containing hundreds of thousands of fiber cross-sections,
whether in general or non-general position.

Keywords 3D printing (3DP); microscope image pro-
cessing; fiber-reinforced polymer (FRP);
Voronoi diagrams; α-shapes; resin-rich areas

1 Introduction

3D printing (3DP), or additive manufacturing,
constructs 3D physical objects directly from digital
models by successively depositing material layer by
layer. The materials, methods, and applications
of 3DP have been widely investigated due to
advantages such as flexible customization, quick
start to production, and the ability to fabricate
complex geometries. Traditional 3DP systems use
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isotropic materials, such as metals or plastic
filaments, whose mechanical properties are identical
in all directions (though the layered prints are
anisotropic). Recently, however, significant technical
advances in 3DP processes have enabled printing
with anisotropic materials to manufacture continuous
fiber-reinforced polymer (FRP) composites [1, 2].
Compared to typical 3DP metal or plastic parts, FRP
parts have superior strength-to-weight ratio in the
fiber directions (e.g., lightweight 3D printed FRP
parts have greater tensile strength than aluminum
parts [2]).

Although the FRP 3D printing process is
progressively improving, defect detection in printed
parts remains largely manual and inefficient. Defect
detection, failure analysis, and material and
mechanical properties of a part are studied by
examining cross-sectional microscope images [3]. In
continuous FRP 3D printing, parts are typically
printed with a unidirectional or cross-ply laminate
structure [4, 5], in which all fibers in the part, or in
the same layer respectively, have the same direction.
Cross-sectional micrographs, taken transversely to
the fiber direction, can effectively assist inspection
and analysis of the material microstructure of each
3D printed layer (cross-ply structure) or the whole
printed part (unidirectional structure). Figure 1
shows an example of a transverse microscope image
of a cross-section of a unidirectional continuous FRP
3DP part, where the circular fiber cross-sections and
the surrounding polymer (the resin, or matrix) can
be seen. The strength and stiffness of the composite
material is primarily provided by the fibers, with
the polymer providing a cohesive matrix to protect
and hold the fibers together, so a uniform fiber
distribution and a high fiber volume fraction are
desirable. Ideally, fibers are aligned and thus have
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Fig. 1 (a) Transverse optical microscope image, and (b) a close-up,
showing a cross-section of fibers and resin.

circular cross-sections in the transverse microscope
images, but misaligned fibers may exist, indicating
areas of reduced strength; these appear as ellipses
(Fig. 2).

Because of their different characteristics, the
geometric distribution of the fiber and resin is a
key indicator when evaluating the quality of the
part and printing process. As shown in Fig. 1(a),
unevenly distributed fibers in the resin results in
areas with insufficient reinforcement; such areas are
commonly called resin-rich areas and lead to impaired
mechanical properties and potential part failures [6, 7].
To emphasize the fact that such areas are actually
defects, we will use the alternative term fiber-
deficient areas in this paper. Currently, fiber-deficient
area detection using microscope images is largely
performed manually by experienced researchers [8].

In this paper, we present a novel algorithm
to automatically detect fiber-deficient areas from
microscope images of 3D printed FRP parts (see
Fig. 3). This algorithm takes the result of circle
and ellipse detection on the image as the locations
of fibers, and determines the fiber-deficient areas
from the input circles and ellipses using their Voronoi
diagram and corresponding α-shape [9]. Our main
contributions include:
• A novel approach to automatically find fiber-

deficient areas in microscope images of 3D printed
FRP parts using α-shapes that handles both
aligned and misaligned fibers.

• Fast computation of the Voronoi diagram and

Fig. 2 Aligned fibers, with circular cross-sections, and misaligned
fibers, with elliptical cross-sections.

Fig. 3 Fiber-deficient areas detected by our algorithm, using as
input the microscope image shown in Fig. 1(a). The probe radius
used here is the mode of the detected fiber radii.

α-shape of circles and ellipses using an approach
specifically designed to exploit the characteristics
of FRP composites. It is especially efficient when
the majority of the fiber cross-sections are of
similar size.

• Validation of our method on real-world micro-
scope images. Our algorithm robustly detects fiber-
deficient areas in real-world microscope images
containing 100,000 fibers in 3.5 s, and 1,000,000
fibers in 70 s (excluding the time taken for circle
and ellipse detection, which depends strongly on
the resolution of the microscope image).

2 Related work

2.1 FRP 3D printing and defect detection

FRP composite materials are widely used in the
aerospace, automotive, and many other industries. To
reduce waste and handle intricate geometries, cutting
edge methods use additive manufacturing techniques
to fabricate FRP composite parts.

During development of FRP 3D printing processes,
defect detection is an important tool to help
researchers analyze the printed parts and improve
their part quality. For FRP composites, common
defects include voids, inclusions, and fiber-deficient
areas [10]. Detecting voids and inclusions are
both relatively well-studied in the material science
community, and are now supported by image
processing software such as ImageJ [11].

Compared to voids and inclusions, the detection
of fiber-deficient areas is both more complex
and less well-studied. A few researchers have
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attempted to automate estimating the location
and distribution of fiber-deficient areas by utilizing
Delaunay triangulations [7] or their dual, Voronoi
diagrams [12, 13]. The main insight of these
approaches is that spatial tessellations using the
center points of the fibers can identify large tessellated
regions as fiber-deficient areas. A limitation of such
methods is that they treat fiber cross-sections as
identical circles, ignoring variation in fiber diameters
and ellipticity, which impairs their accuracy [12].
Tuning their parameters to choose appropriate
thresholds for what constitutes a fiber-deficient area
can be particularly problematic for real-world cases
with these issues. Further discussion and comparison
with our approach is provided in Section 7.

These methods, as well as ours, require fiber
detection as a preprocess. We used a MATLAB
implementation of the state-of-the-art for detecting
non-broken circular and elliptical fibers [14]. Broken
fibers have little strength, so we should treat them as
absent: areas where they are present should be flagged
as fiber-deficient. The time taken for this watershed-
segmentation-based fiber detection and classification
method depends on the resolution of the input image
and the number of fibers. For our 18,000 × 10,000
pixel test images, it takes just over 10 min to identify
all 1.15 million fiber cross-sections present, on an Intel
Core i7-9700K CPU with 16 GB RAM (without using
MATLAB GPU calls). This method can achieve an
accuracy of over 99.9%.

2.2 α-shapes

The α-shape is a computational geometry concept
originally introduced for point set inputs [15] that
captures the shape that could be accessed by a
probe of radius α without intersecting the inputs.
Generalizing α-shapes from point inputs to spheres,
Kim et al. [16] elucidated the relationship between
the α-shape of input consisting of spheres of different
radii, their Voronoi diagram, and its dual triangulation,
and proposed efficient algorithms for their construction.
Inspired by this approach, we have developed a new
method to construct the α-shape of input comprising
circles and ellipses, and use its complementary regions
to determine the fiber-deficient areas.

2.3 Voronoi diagram of circles and ellipses

The Voronoi diagram is a powerful computational
geometry concept with numerous applications in

science and engineering [17, 18]. Voronoi diagrams
of circles and ellipses are a well-investigated topic
because the cross-sections of many natural and
industrial objects are circular or elliptical, including
fibers.

Multiple algorithms have been proposed to
calculate the Voronoi diagram of circles. Kim et
al. [19, 20] proposed an algorithm that uses the
ordinary Voronoi diagram of the circle centers as
a seed, and then updates its topology by a series
of edge-flipping operations. Jin et al. [21] reported
a sweepline algorithm that handles circle inputs in
arbitrary locations. The input circles are allowed
to intersect or even fully contain each other. Lee
et al. [22] designed an efficient topology-oriented
incremental algorithm that robustly constructs the
Voronoi diagram of 100,000 input circles in seconds,
while handling degenerate cases. Some approaches for
constructing the 3D Voronoi diagram of spheres, such
as region expansion [23] or GPU ray-casting [24, 25],
have 2D analogs for efficiently computing Voronoi
diagrams of circles.

Beyond circles, the method of Emiris et al. [26, 27]
can construct Voronoi diagrams of both circles and
ellipses. However, it takes about 60 s to process 200
input ellipses [27], and is slow for applications with
larger numbers of inputs.

Currently, no existing methods can efficiently
construct the exact Voronoi diagram of inputs with
large numbers of both circles and ellipses. Some
approaches are efficient for circle inputs [19–22], but
are difficult to extend to ellipse inputs; others handle
both circle and ellipse inputs [26, 27], but are slow
for large numbers of inputs.

Our inputs are predominantly composed of circles
of essentially the same size with the exception of a few
ellipses and large-size circles, and we have designed an
efficient method to calculate exact Voronoi diagrams
of inputs having these properties.

3 Algorithm overview

Our approach uses α-shapes to evaluate the proximity
among the cross-section of fibers in the microscope
image, and detect the areas where fibers are locally
deficient.

Figure 4 illustrates the steps of our algorithm:
0. (Preprocessing). Detect the locations and sizes

of the fiber cross sections in the input microscope
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Fig. 4 Algorithm overview: (a) input microscope image, (b) circle detection, (c) Voronoi diagram, (d) dual triangulation, (e) α-shape in the
refined region, (f) resulting fiber-deficient areas, the complement of the α-shape. The boundary region is the complement of the refined region,
and is ignored.

image, using the watershed-segmentation-based
algorithm in Ref. [14].

1. Construct the Voronoi diagram based on the fiber
geometries.

2. Construct the dual triangulation from the
Voronoi diagram.

3. Calculate the refined region to focus on (as well
as its complementary boundary region). Build
the α-shape from the dual triangulation in the
refined region, identifying areas where fibers are
close together.

4. Calculate the complement of the α-shape, giving
the fiber-deficient areas. Further check and
divide them into sub-areas if necessary.

Transverse cross-sectional microscope images of
3D printed FRP materials have the following
characteristics:
• A typical image contains hundreds of thousands

of fiber cross-sections.
• Most fibers are aligned, appearing as circles of

about the same size, with a few appearing larger.
Only a few fibers are misaligned, appearing as
ellipses.

Our algorithm is designed specifically for these
input characteristics: construction of the Voronoi
diagram and α-shape is most efficient for inputs that
are primarily circles, with a relatively small number
of ellipses and circles of large radii.

4 Preliminaries

Given a set of objects O = {O1, . . . , On} in R2, the

Voronoi diagram of O is defined as the partition of
the plane into n Voronoi cells, where each Voronoi
cell is the set of all points closer to a particular input
object Oi than to Oj (∀j 6= i).

Within the Voronoi diagram, Voronoi edges are
common boundaries between two adjacent Voronoi
cells. Any point on a Voronoi edge is equidistant from
its two corresponding input objects. The intersections
of Voronoi edges are Voronoi vertices. Each Voronoi
vertex is equidistant from all of its corresponding
input objects.

Because of this equidistance property, a Voronoi
vertex always corresponds to the center of an
empty circle that is tangent to all of the vertex’s
corresponding objects. Following the nomenclature
for Voronoi diagrams of points, we call this a
circumcircle, centered at the Voronoi vertex, having
as its radius the distance between the Voronoi vertex
and the corresponding objects. It does not overlap
with the interior of any input object (see Fig. 5(b)).

The calculation of Voronoi vertex geometry is
identical to the calculation of the circumcircle of a
set of three corresponding objects, circles and ellipses
in our case. We use the circumcircle calculations
for circles and ellipses detailed in Refs. [20, 26]
respectively.

The dual triangulation (see Fig. 5(c)) is the dual
structure of the corresponding Voronoi diagram. It
satisfies the following duality properties, illustrated
in Fig. 5(d):
• Each Voronoi vertex corresponds to a bounded

face in the dual triangulation. The centers of the
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Fig. 5 Voronoi diagram and dual triangulation of a set of input circles
with different radii: (a) Voronoi diagram, (b) Voronoi vertices and
corresponding circumcircles, (c) dual triangulation of the same input,
(d) superimposed Voronoi diagram and dual triangulation, illustrating
their duality.

corresponding circles or ellipses of the Voronoi
vertex are the dual triangulation face vertices.

• Each Voronoi edge corresponds to an edge
(perpendicular to it for circle inputs) in the dual
triangulation.

• Each Voronoi cell corresponds to a vertex in
the dual triangulation. Vertices in the dual
triangulation are centers of the input circles or
ellipses.

We apply α-shapes to a set of two-dimensional
circle and ellipse inputs representing the fiber cross-
sections: imagine a probe with radius α moving
around the whole 2D plane while not overlapping any
of the inputs. The union of regions where the probe
cannot reach is defined as the α-hull (see Fig. 6(a)).
The curved edges on the boundary of the α-hull are
then replaced by straight edges to obtain the α-shape
(see Fig. 6(b)). In our application, α-shape regions
are places where fibers are close to each other, since
the probe cannot be moved between them without
colliding with the fibers, while complementary regions
to the α-shape are fiber-deficient areas (see Fig. 6(b)).

The α-shape is constructed from the dual
triangulation by first calculating the α-complex, the

Fig. 6 (a) α-hull and (b) α-shape for circle inputs.

simplicial complex that is the subset (subcomplex)
of the dual triangulation whose elements (triangular
faces and edges) are inaccessible by the α-probe; the
union of such elements is the α-shape (see Fig. 7).
The details of this process are discussed in Section 6.

Note that the concepts of Voronoi diagrams and
α-shapes were originally defined for point set inputs.
Voronoi diagrams were then generalized to arbitrary
objects, and these are sometimes referred to as
generalized Voronoi diagrams, but often generalized is
omitted. Similarly, although we generalize α-shapes
to arbitrary objects, we just refer to them as α-shapes
instead of generalized α-shapes.

Fig. 7 Relationship between: (a) dual triangulation, (b) α-complex,
(c) α-shape.

5 Construction of the Voronoi diagram

5.1 Approach

Preprocessing the microscope image provides a set
of circles and ellipses representing the locations and
sizes of the detected fibers. In the next step, we build
the Voronoi diagram of these circles and ellipses.

Recall that most fibers have circular cross-sections
with identical radius, with a few exceptions having
larger radius or that are elliptical. For convenience,
we will call the majority, identical-size circles regular
input sites, and the exceptional-size circles or ellipses
special input sites. The input sites may slightly
overlap each other, but none are fully contained
within others (i.e., there are no hidden sites).

The construction of the Voronoi diagram follows
a simple idea: we first build a Voronoi diagram
assuming all inputs are regular input sites. We then
expand the Voronoi cell of each special input site, one
after another, gradually transforming the preliminary
Voronoi diagram to the final Voronoi diagram. We
call this process the cell-expansion method.

Figure 8 shows an example of the serial cell-
expansion process. The input consists of four regular
sites and two special sites (see Fig. 8(a)). We first
calculate the Voronoi diagram assuming all input
circles are regular sites (see Fig. 8(b)). Constructing
the Voronoi diagram of a set of identical circles is the
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Fig. 8 Cell-expansion process: (a) input, (b) ordinary Voronoi
diagram, (c, d) expanding the Voronoi cell of one special site, (e)
expanding the Voronoi cell of the second special site, (f) result. The
expanding input sites and Voronoi cells are in red.

same as constructing the ordinary Voronoi diagram
of a set of points; in our implementation, we use the
Triangle library by Shewchuk [28] to do so. This
library uses a data structure that simultaneously
represents the ordinary Voronoi diagram and its dual
triangulation. Starting from the ordinary Voronoi
diagram, we iteratively expand the Voronoi cells of
each special site in random order, updating the cells’
geometry and topology in the data structure (see
Figs. 8(c)–8(e)), until all special sites have been
processed (see Fig. 8(f)). Note that Voronoi edges
that are straight line segments for equi-sized circle
input generally become curved when their neighbors
are special sites.

In Fig. 9, suppose we are extending the red circle
and its Voronoi cell. Its cell vertices are v1–v4, and
its cell edges are e1–e4. Voronoi edges connected to
its cell vertices, but that are not its cell edges, are
radiating edges of the expanding cell: e5–e8. Voronoi

Fig. 9 An expanding Voronoi cell (red) with: cell vertices v1–v4,
cell edges e1–e4, radiating edges e5–e8, and neighboring vertices
v5, v6.

vertices connected to radiating edges but not cell
vertices are neighboring vertices of the expanding cell:
v5 and v6.

Some Voronoi cells are unbounded, with Voronoi
edges having one or both ends at infinity. We call such
edges infinite cell edges; we treat them as connected
to distinct cell vertices at infinity. An example of an
unbounded Voronoi cell is shown in Fig. 10. Suppose
we are expanding the red circle and its Voronoi cell.
Then e3 and e4 are infinite cell edges connected to
different cell vertices at infinity, v4 and v5 respectively.

As we increase the size of a particular input site, its
corresponding Voronoi cell expands accordingly. Kim
and Kim [23] showed that for 3D Voronoi diagrams of
spheres, during the Voronoi region expansion process,
topology changes only occur at Voronoi vertices or
edges. Thus, it is sufficient to only consider the status
of the edges and vertices of the expanding Voronoi
cell for topology changes. We state an analogous
theorem for the 2D Voronoi diagram of circles and
ellipses:

Theorem 1. In a 2D Voronoi diagram of circles
and ellipses, when a specific Voronoi cell is expanded,
topology changes only occur at cell vertices, but not
at cell edges.

Proof Suppose the theorem is false, i.e., topology
changes may also occur at cell edges. During the
expansion process, such cell edges would intersect
other Voronoi cells, generating new Voronoi vertices
on the edge. Consider Fig. 11. As cell 1 expands,
its cell edge (red) intersects another Voronoi cell
(cell 2), locally dividing cell 3 into cells 3 and 3′,
and generating a new Voronoi vertex. As explained
in Section 4, the new vertex has a corresponding

Fig. 10 An expanding unbounded Voronoi cell (red) with: regular
cell vertices v1–v3, cell vertices at infinity v4, v5; regular cell edges
e1, e2, and infinite cell edges e3, e4.
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Fig. 11 Topology changes at cell edges during expansion. This
situation only exists for non-convex inputs, and not for circle and
ellipse inputs.

circumcircle that is tangent to the objects in each of
its generating cells. So in this case, the input object
of cell 3 must have tangent points to the circumcircle
for both cell 3 and cell 3′. However, this contradicts
our assumption of convex inputs (circles and ellipses),
since a convex shape only has at most one tangent
point to a circle. Hence, the theorem is valid. �

During the serial cell-expansion process, for the
expansion of each special site, our algorithm follows
a two-step process to detect potential vertex status
and topology changes:
1. Check if the expanding site has infinite cell edges,

which may generate new vertices.
2. Next, for each cell vertex, check its interaction

with neighbors by tracing along radiating edges.
Each vertex might collide with a neighbor vertex,
disappear, or remain unchanged in its topology.

We now explain each step in detail.

5.2 Checking infinite cell edges

During the cell-expansion process, if the current
expanding site has an unbounded Voronoi cell,
we check all of its infinite cell edges to detect
their potential intersections with infinite edges not
belonging to the expanding cell.

In Fig. 12(a), consider infinite cell edge e1. As
the input site C1 expands, e1 moves towards its
neighboring Voronoi cell corresponding to C2 and
potentially intersects with another infinite edge e3.
Edges e1 and e3 are shared by sites C1–C2, and C2–
C3, respectively. If they intersect, there must be a new
circumcircle generated by C1, C2, and C3. Applying
the robust methods described in Ref. [20] (or Ref. [26]
for ellipses), we find the circumcircles for sites C2, C3,
and the expanded C1. As illustrated in Fig. 12(b), in
this case, the newly generated circumcircle is detected
from the calculation. From the existence of the new
circumcircle, we confirm the intersection of e1 and e2,

Fig. 12 An expanding unbounded Voronoi cell with infinite cell
edges: (a) before expansion, (b) a newly generated circumcircle exists,
(c) after expansion, with a new generated vertex v2 and edge e4.

and then update the geometry and topology of the
Voronoi diagram (Fig. 12(c)).

A disconnected edge is a special infinite edge both
of whose ends extend to infinity. Following the
process described above, we check for newly generated
vertices at each of its ends. As shown in Fig. 13, new
vertices may be generated at both of a disconnected
edge’s ends.

5.3 Tracing cell vertices along radiating
edges

5.3.1 Approach
For each special input, after checking its infinite
cell edges and updating the topology and vertex
geometry accordingly, we obtain an updated list

Fig. 13 Disconnected edges in the cell-expansion process.
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of its cell vertices. When a Voronoi cell expands,
each of its cell vertices moves outward along its
corresponding radiating edge because the vertex must
remain equidistant from the two sites generating
the radiating edge. In this second step of the
cell-expansion process, we trace each of the non-
infinite cell vertices along its radiating edge, detecting
potential topology changes. We consider two cases.
5.3.2 Radiating edge extends to a neighbor vertex
For each cell vertex we are tracing, if its radiating
edge extends to a neighbor vertex, the cell vertex
might collide with this neighbor vertex.

See Fig. 14(a). Assume we are analyzing cell vertex
v1 of the expanding site C1. As site C1 expands, v1
moves along its radiating edge e1 towards neighbor
vertex v2 (see Fig. 14(b)). No topology changes
occur until v1 collides with v2. At the collision point,
vertices v1 and v2 merge into a single cell vertex
and radiating edge e1 disappears (see Fig. 14(c)).
After the collision, the new cell vertex splits into two
cell vertices, which move along each of the newly
adjacent radiating edges, generating a new cell edge
e2 (see Fig. 14(d)). This process is called edge flipping
because it locally flips an old Voronoi edge (e1) to
a new one (e2), with no other topology changes
elsewhere.

We can perform a simple check for the collision
between cell vertices and corresponding neighboring
vertices by checking if the expanding site collides
with the corresponding circumcircle of the neighbor

Fig. 14 During expansion of a special site (red), the cell vertex v1
collides with neighbor vertex v2, causing a topology change.

vertex. In Fig. 14, neighbor vertex v2 is the center of
the circumcircle of its three corresponding sites C2,
C3, and C4. There is no topology change when the
expanding site C1 does not intersect the circumcircle
(see Fig. 14(b)); two vertices degenerate to one when
C1 is tangent to the circumcircle (see Fig. 14(c)), and
a edge flip operation is needed when C1 overlaps the
circumcircle (see Fig. 14(d)).

Figure 15 shows a special case where the neighbor
vertex is in non-general position (i.e., the vertex
is shared by more than three sites). In this case,
after the cell vertex collides with this neighbor
vertex, new cell vertices are generated on each of the
radiating edges from the original neighbor vertex, and
new cell edges are generated between these vertices,
proceeding in clockwise or counter-clockwise order.

After each of the topology change events described
above, new vertices are generated. We iteratively
check each newly generated vertex along its radiating
edge, until no further topology changes occur.
5.3.3 Radiating edge extends to infinity
See Fig. 16. When a cell vertex v1 has a radiating
edge e1 that extends to infinity, it moves along
this radiating edge. During the expansion of the
corresponding cell, the vertex v1 may disappear at
a critical point. At the critical point, the original
radiating edge e1 disappears along with the cell vertex
v1, and instead the two cell edges connected to this
cell vertex (e2 and e3) become infinite at this end
(see Fig. 16).

Fig. 15 A special case: a neighbor vertex in non-general position.

Fig. 16 During the cell-expansion process, a cell vertex vanishes
when its radiating edge extends to infinity.
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We detect this topology change by calculating
the circumcircle of the expanding cell vertex’s
corresponding input sites. If the circumcircle exists,
the vertex is still moving along the radiating edge,
and no topology change occurs (see Fig. 16(a)); the
critical point occurs when all three corresponding
inputs are tangent to a line (see Fig. 16(b)). Starting
from this critical point, no circumcircles exist for

the corresponding inputs, and the topology of the
Voronoi diagram must be updated (see Figs. 16(b)
and 16(c)).

5.4 Overall cell-expansion process

Figure 17 summarise our cell-expansion process. The
input is the ordinary Voronoi diagram, which is then
processed in two levels of iteration in our method.

Fig. 17 Summary of the cell-expansion process.
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We iterate over the special sites to expand their
corresponding Voronoi cells. For each expanding
cell, we first check for topology changes in its infinite
edges and then perform another level of iteration to
detect other topology changes by tracing each cell
vertex along its corresponding radiating edge(s).

During the process, we gradually update the
topology and vertex geometry of the input Voronoi
diagram until all special sites have been expanded.
We do not calculate the curved edge geometry because
it is not used in computing the α-shape in subsequent
steps.

The cell expansion method works for both circle and
ellipse inputs. Detecting topology changes is based
on detecting the intersections between the expanding
object and each of the corresponding circumcircles
formed by its neighboring vertices.

6 Construction of the α-shape

6.1 Determining the refined region

After calculating the Voronoi diagram, we directly
obtain the dual triangulation, as detailed previously
in Section 4. As Fig. 20(a) shows, at the boundary of
the dual triangulation, skinny triangles can occur. In
a later step of constructing the α-shape (Section 6.3),
we will determine if the α probe can be placed in
a dual triangulation cell by comparing the size of
its corresponding circumcircle with the α value. In
that step, such a boundary skinny cell will be falsely
detected as a fiber-deficient area because the size of
its circumcircle does not indicate the actual size of
the empty space between the three corresponding
input objects. To avoid this miscalculation, we must
cull these boundary-artifact skinny cells from the
dual triangulation. After this culling process, we
determine fiber-deficient areas on the remaining dual
triangulation area (see Section 6.3).

In the dual triangulation, for any triangle having
at least one edge at the boundary, we determine
if it is a boundary-artifact triangle by checking if
its corresponding circumcircle entirely stays outside
this triangle. If so, the size of the circumcircle
depends more on the boundary geometry than the
actual empty space of the boundary-artifact triangle
(see Fig. 18). We then cull all such boundary-
artifact cells from the dual triangulation. We call
the remaining part of the dual triangulation the
refined dual triangulation (see Fig. 20(b)), and its

Fig. 18 Boundary-artifact triangles and their corresponding
circumcircles.

corresponding region the refined region. The region
outside the refined region is the boundary region
(Fig. 20(c)), which is not considered in the following
process.

6.2 Determining the threshold for α values

In the microscope image, if all fibers are evenly
distributed, there can be no fiber-deficient areas.
See Fig. 19(a). In this optimal situation, the fibers
are evenly distributed in a hexagonal lattice, with
the plane tiled by a triangular pattern with vertices
located at the centers of the three neighboring fiber
cross-sections. The largest possible probe (with
radius αthresh) that can be placed into this pattern
is the circle centered at the center of the triangle,
tangent to all of the three fiber cross-sections (see
Fig. 19(b)). Any geometry change to the fibers will
cause what could be considered fiber-deficient areas,
where probes with radii larger than αthresh can be
inserted. Thus only probes with radii larger than
the threshold probe size (αthresh) could indicate fiber-
deficient areas.

This (αthresh) is thus a function of the fiber volume
fraction vf (the ratio of the volume of fibers to the
total volume) as well as the fiber radius R. Analyzing
the tiled triangular geometry (see Fig. 19(b)) to find
the ratio of the fiber cross-section areas to the whole
cross-section area in this ideal case, we set it equal

Fig. 19 Geometric relation between the threshold α value αthresh
and the radius of the fiber cross-sections R.
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Fig. 20 Determining fiber-deficient areas from the dual triangulation:
(a) dual triangulation, with boundary-artifact cells rendered in red, (b)
refined dual triangulation, (c) boundary region, the complement of the
refined dual triangulation, (d) α-complex, (e) α-shape, (f) detected
fiber-deficient areas.

to the actual vf for the manufacturing process and
solve for αthresh. Letting ` denote the side length of
the equilateral triangle, we have

vf = πR2

sin(60◦)`2 (1)

For any equilateral triangle, the distance of its center
from its vertices satisfies

R+ αthresh =
√

3
3 ` (2)

Substituting for ` in Eq. (2) by an expression in terms
of R and vf from Eq. (1), we can derive the following
relation:

αthresh =
(√

3
3

√
π

sin(60◦)vf
− 1
)
R (3)

From the above equation, if the printed composite
has, for example, nominal fiber volume fractions of
50%, 60%, or 70%, the threshold α value αthresh is
0.555R, 0.420R, or 0.314R respectively. The choice
of αthresh in different applications is further discussed
in Section 7.
6.3 Constructing the α-shape in the refined

region

In Ref. [29], Kim et al. described a process for
constructing the α-complex from the dual tri-
angulation of circle inputs. We extend this idea to
construct the α-complex of circles and ellipses from
their refined dual triangulation. The process has two
parts.

First, for each edge in the refined dual triangulation,
we check if the probe can traverse it by comparing
the probe’s diameter (2α) with the shortest length
between the edge’s corresponding objects (see Fig. 21).
For a dual triangulation edge between circles, the
shortest length equals the edge length (distance
between circle centers) minus the radii of the two
corresponding circles; for a dual triangulation edge
between an ellipse and another circle or ellipse, the
shortest length no longer has a simple relation to its
edge length. We apply the method proposed by Zheng
and Palffy-Muhoray [30] to calculate the shortest
distance between two arbitrary ellipses, or a circle
and an arbitrary ellipse. If the edge’s corresponding
shortest distance is greater than 2α, the probe is
able to freely traverse such an edge without colliding
with either of the objects, so we keep this edge in the
α-complex; if not, the probe is unable to traverse the
edge, so we remove it from the α-complex.

Next, for each cell in the refined dual tri-
angulation (connecting a triplet of circle centers), we
check if the probe can be placed into it by comparing
the diameter of the cell’s corresponding circumcircle
to 2α. This is the circumcircle we calculated
when constructing the Voronoi diagram, the largest
circle that can possibly be placed between the three
corresponding inputs (see Figs. 5 and 7). If the
circumcircle’s diameter is smaller than 2α, the probe
can not be placed in this cell, and we keep this dual
triangulation cell in the α-complex; otherwise, the
probe can be placed in the cell, and we remove the
cell from the α-complex.

The α-complex (Fig. 20(d)) is a subset of the dual
triangulation; it may contain dangling edges and
interior voids. The above processes for checking
edges and cells are separate: removing a cell does not
necessarily mean its three corresponding edges will
also be removed from the α-complex.

From the α-complex, we merge all neighboring cells,

Fig. 21 Shortest length between: (a) two circles, (b) two ellipses.
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and remove the edges between merged cells. The new
structure is the α-shape (see Fig. 20(e)), indicating
areas within which fibers are sufficiently dense that
no probes could be placed there.

To find the fiber-deficient areas, in the refined
region, we take the complement of the α-shape.
If a complementary area is fully divided by the
dangling edges in the α-shape, we treat its sub-areas
as separate fiber-deficient areas (see Figs. 20(f) and
22). It is necessary to distinguish such sub-areas
because they do not form a fully connected region in
which fibers are deficient. For example, see Fig. 22:
although fibers are deficient inside each of the two
detected sub-areas, there are enough closely spaced
fibers at the boundary where they meet to increase
its local strength. Since the fiber-deficient areas
are not continuous across their locally reinforced
contacting boundary, considering them as separate
sub-areas helps in subsequent quality analysis and
failure prediction processes.

Fig. 22 A fiber-deficient area divided by a dangling edge: (a) α-shape,
(b) two fiber-deficient areas.

7 Results

We have tested our algorithm on 30 high-resolution
real-world microscope images from 3D printed FRP
parts. Our images are all approximately 18,000 pixels
×10,000 pixels, and contain about 1.15 million fiber
cross-sections each, with the mode of the radii of
fiber cross-sections 7 pixels. Because of the inherent
variability in microscopy and circle/ellipse detection
processes, it is common to have a ±1 pixel deviation
in the detected circle radii or ellipse minor axes (for
a misaligned fiber, the minor axis equals the original
fiber radius). Therefore we use ±15% (±d1/7e) as
our tolerance: if a fiber cross-section does not deviate
by more than 15% from the mode of the detected
radii Rmode, we consider it to have radius Rmode just
like most other fiber cross-sections.

The proportion of expanded and misaligned
fibers is highly dependent on the quality of the

3D printing process: poorer manufacturing leads
to more expanded and misaligned fibers. In our
test images, we found that no more than 1% of the
fiber cross-sections were larger size (expanded) circles
(radii > 1.15Rmode) and no more than 0.008% were
ellipses. No shrunken fibers (radii < 0.85Rmode) were
found.

Our algorithm robustly handled all 30 real-world
examples we tested, whether the fibers are circles or
ellipses, in general position or not (see Figs. 3, 23,
and 25). Figure 23 shows results on small cropped
portions of microscope images with different levels of
ellipse content ratio. The probe radius α is chosen
as the mode of the radius of the detected fibers (α =
Rmode) in each test case.

A comparison between the fiber-deficient areas
identified by our method and spatial-tessellation-
based approaches [7, 12, 13] on the same circles and
ellipses detected by pre-processing is shown in Fig. 24.
Here, we apply the method described in Ref. [7] that
constructs the Delaunay triangulation of the center
points of each detected fiber, and identifies triangles
with areas greater than a user-defined threshold as
fiber-deficient areas. Since such methods ignore size
and shape variation in fibers, they are unable to
accurately detect regions where elliptical or varying-
size circular fiber cross-sections exist (e.g., inside the
yellow rectangles in Figs. 24(b) and 24(c)) regardless
of threshold choice. In contrast, our method robustly
detects fiber-deficient areas (see Fig. 24(d)) since it
takes both misaligned fibers and aligned fibers of
varying sizes into account.

Another advantage of our method over spatial-
tessellation-based methods is the ease of parameter

Fig. 23 Experimental results on two real-world microscope images.
Separate fiber-deficient areas are distinguished by different colors; gray
areas are boundary regions.
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Fig. 24 Comparison between our method and a spatial tessellation (Delaunay) based approach [7]: (a) input, (b) Delaunay approach with low
threshold; (c) Delaunay approach with higher threshold, (d) our result. Yellow squares indicate regions with densely distributed misaligned
fibers, which should not be identified as fiber-deficient areas.

value selection. In spatial-tessellation-based methods,
since an appropriate threshold value depends on many
factors such as image resolution and fiber distribution,
and even triangle aspect ratio distribution, it is
difficult for users to choose an appropriate threshold
a priori. In our method, the α value can be intuitively
understood as the size of the moving probe, and we
have found that just using the mode of the detected
radii Rmode or a small multiple thereof typically
gives results that material experts find meaningful
for analyzing defects.

Different choices of α result in different detected
areas (see Fig. 25). Higher α values keep significant
fiber-deficient areas and ignore tiny ones, useful when
we only need to locate large defects such as inter-
layer or inter-strip fiber-deficient areas. Lower α
detects both significant and tiny fiber-deficient areas,
which is preferred when we want to compile thorough
statistics of fiber distribution in the part. For high-
quality industrial FRP composite parts (typically
50%–70% nominal fiber volume fraction), depending

Fig. 25 Effect of changing α. Above: 55 detected fiber-deficient areas
when α = 2Rmode. Below: 18 detected areas when α = 2.5Rmode.

on the application, α values ranging from Rmode to
3Rmode provide good inspection results.

To perform a complexity analysis, let n be the
number of input sites (detected fiber cross-sections,
including expanded and misaligned ones). It takes
O(n logn) worst case time and O(n) average time [31]
to construct the ordinary Voronoi diagram of points
and thus of the centers of detected fiber cross-sections.
The cell expansion process of each large circle or
ellipse takes time linear in the number of neighboring
sites of the expanded cell. Since there might be
(n− 1) large circles and ellipses, and each expanded
cell may interact with all the other (n − 1) sites,
the cell-expansion process takes O(n2) time in the
worst case. In most cases, the cell-expansion process
takes O(n) time because in general Voronoi cells have
few, O(1), neighboring sites. Constructing the dual
triangulation from the Voronoi diagram only takes
O(1) time because the dual is already captured in
the Triangle software’s data structure. From the dual
triangulation, we compare the size/shape of each of
the O(n) edges and cells to the size of the α-probe,
and preserve those that are not traversable by the
α-probe as the α-shape. Therefore, the total time
complexity of our algorithm is O(n) for typical real-
world inputs, even if O(n2) in the worst case.

We have implemented our algorithm in C++, and
tested our code on a PC with an Intel Core i7-9700K
CPU with 16 GB RAM. To test the efficiency of
our implementation, we randomly selected real-world
microscope images and cropped them to give smaller
images containing different numbers of fibers. Run
time (exclusive of the fiber detection process) for
different cropped images is shown in Table 1. We
can observe that, although the calculation complexity
depends on the number of expanded and misaligned
fibers, the run time is roughly linear with regard to the
number of detected fibers in these real-world inputs.
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Table 1 Run time (excluding circle/ellipse detection) for real-world
inputs with different numbers of detected fibers

Number of
detected fibers

Number of
expanded fibers

Number of
misaligned fibers

Run time
(s)

10,087 85 0 0.25
50,048 40 5 2.17

100,040 92 3 3.12
500,156 1418 20 25.67

1,000,144 4482 144 68.63

However, when the input includes a large number of
misaligned fibers, the algorithm takes significantly
more time, a limitation of our approach.

To test the sensitivity of our algorithm to the
number of expanded or misaligned fibers, we
artificially increased their content ratios by randomly
picking regular detected circles and reshaping them
into large circles or ellipses. For an example with
100,040 detected fibers, the algorithm’s run time
for different numbers of artificially expanded circles
and ellipses is shown in Tables 2 and 3 respectively.
Compared to the number of large circles, the number
of ellipses has more impact on the total run time, due
to the more complicated calculation of circumcircles
and shortest distances for ellipses.

Table 2 Run time under different number of large circles within
input containing 100,040 detected fibers

Number of large circles Number of ellipses Run time (s)

0 0 2.51
1,000 0 2.77
2,000 0 3.01
5,000 0 3.70

10,000 0 4.76

Table 3 Run time under different number of ellipses within input
containing 100,040 detected fibers

Number of large circles Number of ellipses Run time (s)

0 0 2.51
0 10 3.84
0 20 4.28
0 50 6.78
0 100 10.94
0 500 53.96

8 Conclusions and future work

This paper has presented a new approach and
algorithm to automatically detect fiber-deficient areas
in microscope images of 3D printed FRP parts. It

successfully handles real-world microscope images
containing more than 1,000,000 fiber cross-sections
in 70 s, whether the fibers are aligned or misaligned,
in general position or otherwise. We exploit the
particular characteristics of fibers in 3D printed FRP
parts in our design to considerably improve the
efficiency over general-purpose geometric construction
algorithms. Although the computation time is
sensitive to the unpredictable number of expanded
and misaligned fibers, in our real-world examples, it
shows a roughly linear relationship to the number of
fiber cross-sections.

One potential approach to address this limitation
would be to use an approximation when calculating
circumcircles and shortest distances relating
to expanded circles and ellipses, for example,
approximating an ellipse by a set of boundary
points [32], or a set of circles [18, 33]. Such approximate
methods avoid complex exact calculations, but may
lead to accuracy problems and bring additional
complexity to the automatic detection process (e.g.,
in choosing the sampling/approximation density).

Since large fiber-deficient areas usually indicate
inter-layer or inter-strip gaps, one area for future
research is to automatically recognize boundaries
between strips (as well as the separate individual
strips) by connecting appropriate detected fiber-
deficient areas (see Fig. 26). Recognition of indi-
vidual strips will enable us to better evaluate
the manufacturing process by determining the
amount of intra-strip or inter-strip defects. For
instance, substantial intra-strip defects usually
indicate imperfections in the raw material, whereas

Fig. 26 Adjoining fiber-deficient areas along an inter-strip boundary.
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substantial inter-strip defects usually indicate an
excessive bead width in the 3DP setup.

Our algorithm works not only for circles and
ellipses, but is also applicable to all convex shapes.
Following the same process, we could extend
this algorithm to construct Voronoi diagrams and
α-shapes of other convex shapes by calculating
circumcircles and shortest distances among them.
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